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ABSTRACT  

Down syndrome (DS) is characterized by a marked reduction in the size of the brain 

and cerebellum. These changes play an important role in the motor alterations and 

cognitive disabilities observed in this condition. The Ts65Dn (TS) mouse, the most 

commonly used model of DS, reflects many DS phenotypes, including alterations in 

cerebellar morphology. One of the genes that is overexpressed in both individuals with 

DS and TS mice is DYRK1A/Dyrk1A (dual-specificity tyrosine-(Y)-phosphorylation 

regulated kinase 1A), which has been implicated in the altered cerebellar structural and 

functional phenotypes observed in both populations. The aim of this study was to 

evaluate the effect of Dyrk1A on different alterations observed in the cerebellum of TS 

animals. TS mice were crossed with Dyrk1A +/- KO mice to obtain mice with a triplicate 

segment of Mmu16 that included Dyrk1A (TS +/+/+), mice with triplicate copies of the 

same genes that carried only two copies of Dyrk1A (TS +/+/-), euploid mice that 

expressed a normal dose of Dyrk1A (CO +/+) and CO animals with a single copy of 

Dyrk1A (CO +/-). Male mice were used for all experiments. The normalization of the 

Dyrk1A gene dosage did not rescue the reduced cerebellar volume. However, it 

increased the size of the granular and molecular layers, the densities of granular and 

Purkinje cells, and dendritic arborization. Furthermore, it improved the 

excitatory/inhibitory balance and walking pattern of TS +/+/- mice. These results 

support the hypothesis that Dyrk1A is involved in some of the structural and functional 

cerebellar phenotypes observed in the TS mouse model. 

 

Keywords: Down syndrome, cerebellum, Ts65Dn, Dyrk1A 

 

Highlights: 

Dyrk1A is implicated in cerebellar alterations in a model of Down syndrome. 

Normalization of the Dyrk1A dosage rescues granular and Purkinje cell densities in 

trisomic mice. 

Normalization of the Dyrk1A dosage rescues the size of the granular and molecular 

layers. 

Dyrk1A is implicated in the excitatory/inhibitory balance in a model of Down syndrome. 
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INTRODUCTION  

Down syndrome (DS) is characterized by several structural and functional 

abnormalities in the central nervous system, and a reduction in brain size is one of the 

most important characteristics of this condition. Additionally, an even greater reduction 

in cerebellar volume is observed in fetuses, newborns, children and adults with DS. In 

these individuals, both the total volume and the sizes of specific cerebellar cortical 

structures, such as the internal granule layer (IGL) and molecular layer (ML), are also 

markedly smaller (Aylward et al., 1997; Rotmensch et al., 1997; Baxter et al., 2000; 

Winter et al., 2000; Guidi et al., 2011). These morphological alterations are likely 

caused by a decrease in the densities of cerebellar granule cells (GC) and Purkinje 

cells (Baxter et al., 2000; Guidi et al., 2011). 

 
Traditionally, the cerebellum has been regarded as a key regulator of motor control and 

motor learning (Palay and Chan-Palay, 1982). Children and adults with DS display fine 

motor deficits that have been attributed to cerebellar dysfunction (Latash and Corcos, 

1991; Latash et al., 2002). However, based on accumulating evidence, the cerebellum 

is implicated in higher cognitive functions (Hilber et al., 1998; Petrosini et al., 1998; 

Rondi-Reig and Burguière, 2005; Galiano et al., 2013; Rochefort et al. 2013). Because 

cognitive disabilities are a major hallmark of DS, the altered neuroanatomy of the 

cerebellum in individuals with DS may also be partially responsible for the observed 

cognitive deficits.  

 

Several murine models of DS present similar abnormalities in the cerebellum, 

beginning at early postnatal ages. The Ts65Dn (TS) mouse carries a triplication of the 

distal end of Mmu16, extending from the Mrp139 to the Znf295 genes (Sturgeon and 

Gardiner, 2011). TS mice have a smaller cerebellum, vermis, GL and ML, and less 

dense GC and Purkinje cell populations (Baxter et al., 2000; Roper et al., 2006; Necchi 

et al., 2008; Contestabile et al., 2009). Other murine models of DS, such as the Ts1Cje 

mouse, which is caused by trisomy of the Mmu16 region from Sod1 to Znf295 (Sago et 

al., 1998), and the Tc1 model, in which all of Hsa21 is triplicated, also have a smaller 

cerebellum and a less dense GC population (Olson et al., 2004; O’Doherty et al., 

2005).  

 

Because different murine models of DS and individuals with DS share similar cerebellar 

anomalies, the triplication of this set of orthologous genes might be responsible for 

these phenotypes. Several candidate Hsa21 genes have been reported to play roles in 

brain development. One of these genes is DYRK1A (dual-specificity tyrosine-(Y)-

phosphorylation regulated kinase 1A), which encodes a protein kinase that has crucial 
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functions during brain development and in adult brain physiology (Becker and Sipple, 

2011; Tejedor and Hämmerle, 2011). DYRK1A is important for normal brain growth in 

both mice and humans (Fotaki et al., 2002; Moeller et al., 2008; van Bon et al., 2011; 

Guedj et al., 2012). This gene is expressed at high levels in the cerebellum (Martí et 

al., 2003), and murine models with altered Dyrk1A expression exhibit altered motor 

abilities (Altafaj et al., 2001; Martínez de Lagrán et al., 2004; Fotaki et al., 2002, 2004; 

Souchet et al., 2014). 

 

The aim of this study was to evaluate the role of the Dyrk1A gene in the various 

morphological alterations that occur in the cerebellum of the TS model of DS. TS mice 

were crossed with Dyrk1A KO mice to obtain mice with a triplicated segment of Mmu16 

that included Dyrk1A (TS +/+/+), mice that were trisomic but carried only two copies of 

Dyrk1A (TS +/+/-), euploid (CO) mice that expressed a normal dose of Dyrk1A (CO 

+/+) and CO animals with a single copy of Dyrk1A (CO +/-). Cerebellar volume, sizes of 

the GL and ML, GC and Purkinje cell densities, dendritic arborization, and the walking 

patterns of each group of mice were assessed. 
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METHODS 

1. Experimental animals 

Mice were generated by repeatedly backcrossing B6EiC3Sn a/A-Ts(17<16>)65Dn (TS) 

females with C57BL/6Ei x C3H/HeSNJ (B6EiCSn) F1 hybrid males. The Robertsonian 

Chromosome Resource (The Jackson Laboratory, Bar Harbor, ME, USA) provided the 

parental generations, and animals were mated at the animal facilities of the University 

of Cantabria.  

TS females were crossed with Dyrk1A+/- heterozygous male mice on a mixed 

C57BL/6-129Ola genetic background (Fotaki et al., 2002) to obtain the following groups 

of mice: i) mice carrying a triplicated Mmu16 segment (TS +/+/+) extending from the 

Mrp139 gene to the Znf295 gene, which includes the Dyrk1A gene; ii) mice trisomic for 

all of these genes but diploid for Dyrk1A (TS +/+/-); iii) euploid (CO) mice with a normal 

Dyrk1A dosage (CO +/+) and iv) CO animals with a single copy of Dyrk1A (CO +/-). 

To determine trisomy, animals were karyotyped using real-time quantitative PCR 

(qPCR), as previously described (Liu et al., 2003). C3H/HeSnJ mice carry a recessive 

mutation that leads to retinal degeneration (Rd). Hence, all animals were genotyped 

using standard PCR to detect the Rd mutation (Bowes et al., 1993). Experiments were 

performed using wt/wt or Rd1/wt animals. The Dyrk1A +/- mice were genotyped using 

PCR, as previously described (Fotaki et al., 2002). 

Ninety-six male mice were used. Ten animals (6-10 months old) from each group were 

tested in the MRI studies, and fourteen mice (5-6 months old) in each group were used 

in the remaining experiments. Eight animals from each group were used to i) 

immunohistochemically visualize Purkinje cell arborization, ii) quantify GC and Purkinje 

cell densities, iii) determine the density of glutamatergic and GABAergic synapse 

markers, and iv) perform the footprint study. Six animals from each group were used 

for the western blot analysis of Dyrk1A protein levels. The researchers were blinded to 

the genotypes and karyotypes of the animals throughout the experiments.   

2. Western blot analysis  

Mice were euthanized by decapitation, and the cerebellum was dissected. Whole-

tissue lysates of the cerebellum were prepared using a previously described method 

(García-Cerro et al., 2014). The total protein content of each sample was determined 

using the method described by Lowry et al. (1951). An identical amount of total protein 

(50 µg) from each sample was loaded onto a 10% sodium dodecyl sulfate-

polyacrylamide gel, electrophoresed, and transferred to a polyvinylidene difluoride 
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(PVDF) membrane (Bio-Rad, Hercules, CA, USA) using a Mini Trans-Blot 

Electrophoresis Transfer Cell (Bio-Rad). The efficient transfer of proteins was 

confirmed by staining the PVDF membrane with Ponceau red (Sigma-Aldrich, St. 

Louis, MO, USA). Non-specific binding of antibodies was prevented by incubating the 

membranes with TBST buffer (10 mM Tris-HCl, pH 7.6, 150 mM NaCl, and 0.05% 

Tween 20) containing 3% bovine serum albumin (BSA). Blots were incubated with a 

mouse monoclonal anti-DYRK1A antibody (1:250; Abnova Corporation, Taipei, Taiwan, 

ROC) diluted in TBST containing 3% BSA overnight at 4 °C. After the membrane was 

extensively washed with TBST, it was incubated with a goat anti-mouse IRDye 800CW 

antibody (1:10,000; LI-COR Biotechnology, Lincoln, Nebraska, USA) for 1 h at room 

temperature. The resulting fluorescence was detected using a LI-COR ODYSSEY IR 

Imaging System V3.0 (LI-COR Biotechnology). Images were exported and saved as 

gray scale TIFF files (16 bit) to improve the contrast between signal and noise. The 

integrated optical density of the bands was subsequently determined using ImageJ NIH 

software (http://rsb.info.nih.gov/ij) and normalized to the background values. The 

relative variations between the bands among the four groups of experimental mice 

were calculated in the same experiment. Each individual sample was evaluated in at 

least three independent experiments. Values were within a linear range. Blots were 

reprobed using a mouse monoclonal anti-GAPDH antibody (6C5) (1:2,000; Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) to ensure equal loading. 

 

3. Cerebellar volume (MRI) 

Mice were euthanized and their brains were fixed using transcardial perfusion with 

saline followed by 4% paraformaldehyde.  

MRI studies were performed using a Biospec USR7/30 spectrometer (Bruker, Ettlingen, 

Germany) with a 7-Tesla 30-cm bore magnet equipped with a 12-cm gradient insert 

capable of switching 400 mT/m in 90 ms.  

A 40-mm birdcage 1H-resonator was used for RF transmission and reception. Imaging 

experiments were performed on extracted brains that were placed in 2-ml syringes 

filled with 1X PBS (phosphate-buffered saline) to avoid susceptibility effects at 

tissue/air interfaces. 

Following the automatic calibration of the system (i.e., pulse power, shim, and 

resonance frequency) and the acquisition of a multi-planar scout image (Gradient 

echo), which was used as a localizer to correctly position the imaging planes, 3D 

images were acquired using a high-resolution RARE (rapid acquisition with relaxation 
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enhancement) pulse sequence with the following parameters: the field of view (FOV), 

20 x 12 x 8.6 mm3, and image matrix, 200 x 120 x 86 points, yielding an isotropic pixel 

resolution of 0.100 x 0.100 x 0.100 mm3/pixel; effective bandwidth, 50 kHz, RARE 

factor, 12; effective echo time, 63 ms (TE = 10.5 ms); repetition time, 1700 ms and 

number or averages, 6. The total acquisition time was 2 h 26 minutes. Image post-

processing procedures and analyses were performed using ImageJ software. 

 

4. Histological and staining procedures 

Animals were deeply anesthetized with pentobarbital and transcardially perfused with 

saline followed by 4% paraformaldehyde in PBS. Subsequently, the brains were post-

fixed with the same fixative overnight at 4 °C, cryoprotected in 30% sucrose and frozen 

in dry ice. The brains were cut in the sagittal plane into 30-µm-thick (cryostat) free-

floating sections for immunolabeling of glutamatergic and GABAergic synapse markers. 

For the remaining experiments, 5-µm-thick sections were collected on microscope 

slides. Tissue sections were stored at -20 °C. 

In all immunohistochemical studies, appropriate minimal positive and negative controls 

were used to avoid inaccurate conclusions about false-positive or false-negative 

results. As negative controls for immunostaining, assays were performed using a 

similar protocol, with the exception that primary antibodies were omitted. For positive 

controls, the specificity of antibodies was previously validated by western blot 

experiments showing the recognition of specific bands corresponding to the proteins 

examined in our study. 

 

5. Propidium iodide and DAPI staining 

Tissue sections were incubated at room temperature, and the zone of interest was 

marked using a hydrophobic marker. Next, sections were washed with 1X PBS twice 

for 5 minutes each, treated with PBS-Tw (0.05%) for 5 minutes, dried and placed in a 

humid and dark chamber. Tissue sections were then incubated with DAPI (4’6-

diamidino-2-phenylindole), a cytochemical marker of DNA, in PBS for 12 minutes to 

stain cell nuclei. Next, sections were washed three times with PBS for 5 minutes each. 

Purkinje cells were counterstained with propidium iodide (PI, dilution 1:2,000) for 20 

minutes. Then, sections were washed with PBS and mounted with Vectashield anti-

fade medium (Vector Laboratories, Peterborough, UK).  
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6. Area of the vermis, thickness of the GL and ML and length of the Purkinje cell 

layer 

We obtained optical micrographs of DAPI-stained sagittal sections of the cerebellar 

vermis using a 5x objective (Leica DM6000 M, Leica Microsystems, Wetzlar, Germany) 

to estimate the different areas and lengths of regions of interest. This microscope 

automatically created single panoramic images of the cerebellum from each animal 

with which the different morphometric calculations were performed. 

The mean thicknesses of the GL and the ML were calculated by dividing the length of 

each layer in a midline sagittal section by the total area of the layer. The Purkinje cell 

layer was included in the estimate of the thickness of the ML. Because a stereological 

technique was not used, changes in the parameters between groups are expressed as 

a percentage difference vs. the CO +/+ group, as previously described (Baxter et al., 

2000).  

7. Quantification of granule cell density 

Granule cells were counted in 5-μm-thick sections of the GL stained with DAPI. Six 

sagittal sections of the cerebellar vermis were serially collected on glass slides. GL 

micrographs were recorded using a fluorescence microscope (Zeiss Axioskop 2 plus) 

under a 62x oil objective. Cells were counted within a 5,000-μm2 area. Eight 

independent and non-overlapping fields were randomly selected along the length of 

folias IV, V, VI and VII in the cerebellum of each animal, and the number of GCs in 

each field were counted. The Abercrombie correction factor (Abercombrie, 1946) was 

used to correct the estimates by applying the following formula:  

P = A [M / (L + M)] 

where P is the final estimate of the cell number, A is the number of nuclei counted, M is 

the thickness of the section in μm, and L is the mean nuclear diameter (also in μm). 

Eight nuclei were randomly selected from each animal to estimate the nuclear 

diameter.  

8. Quantification of Purkinje cell density 

The total number of cells stained with PI in a complete midline sagittal section was 

counted and divided by the length of the Purkinje layer for each animal to determine 

the linear density of Purkinje cells.  
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9. Purkinje cell arborization 

We used calbindin immunohistochemistry to evaluate the dendritic arborization in 

Purkinje cells in the ML of the cerebellum. Briefly, 5-μm-thick sections of the vermis 

were collected from animals in each experimental group and placed on SuperFrost 

Plus microscope slides (ThermoFisher Scientific), washed with PBS (3 x 10 minutes) 

and incubated with blocking agent (5% fetal bovine serum and 0.1% Triton X-100 in 

PBS) for 1 h at RT. Then, tissue sections were incubated with the primary rabbit 

polyclonal anti-calbindin antibodies (Swant, Switzerland 1:7,000 in the blocking agent) 

overnight at 4 °C, washed with 0.05% Tween 20 in PBS, incubated with the anti-rabbit 

secondary antibodies (conjugated to Alexa Fluor 488, Life Technologies, 1:75) for 1 h 

at RT, washed with PBS, and mounted with Vectashield-DAPI anti-fade medium 

(Vector Laboratories). 

For each animal, a minimum of three regions of the ML of the cerebellar vermis were 

recorded using a Leica SP5 confocal microscope (Leica Microsystem, Wetzlar, 

Germany) with a 40x objective. Purkinje cell arborization was quantified using a 

systematic random design of dissector counting frames (100 x 100 µm2). Three 

independent fields were randomly selected along the cerebellar vermis. The intensity of 

calbindin immunoreactivity was measured using ImageJ software. First, images 

obtained under the microscope were transformed to 16-bit images and calibrated, and 

background staining was then subtracted. Later, images were transformed to 32-bit 

images and normalized to obtain a gray scale value within the range of 0 to 1, where 0 

represents white and 1 represents black. The mean gray values were measured within 

each frame and averaged to calculate the density for each animal.  

10. Density of glutamatergic and GABAergic synapse markers (VGluT1 and 

VGAT immunofluorescence, respectively)  

Free-floating, 30-µm sections of the cerebellar vermis were used to determine the 

density of GABAergic and glutamatergic synapse markers. Sections were first 

incubated with PBTBSA, and double immunohistochemistry was then performed. 

Glutamatergic and GABAergic boutons were immunolabeled using a guinea pig anti-

vesicular glutamate transporter 1 antibody (VGluT1, 1:2,500; Millipore, Billerica, MA, 

USA) and an anti-GABA vesicular transporter antibody (VGAT, 1:100; Santa Cruz 

Biotechnology, Dallas, TX, USA), respectively. Then, tissue sections were incubated 

with the following secondary antibodies: Alexa Fluor 488-conjugated goat anti-guinea 

pig (1:1,000; Invitrogen, Carlsbad, CA, USA) and Alexa Fluor 594-conjugated donkey 

anti-goat (1:1,000; Invitrogen). 
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Immunolabeled synaptic boutons were measured in images obtained under a confocal 

microscope (Leica SP5). Four sections per animal were used to measure each 

synapse marker, and one random cerebellar area per section was measured. Images 

were analyzed using ImageJ software, as previously described (Martínez-Cué et al., 

2013). Briefly, boutons positive for either VGluT1 or VGAT (because these markers are 

never co-localized) were measured separately. The same threshold was applied to all 

images. Images were converted to grey scale to improve the contrast between signal 

and noise. The area inside of a reference circle with a standard size of 325 μm2 was 

measured. The reference space was located in the inner ML next to the Purkinje cell 

layer. The percentage of the reference area that was occupied by VGluT1- and VGAT-

positive boutons and the excitatory-inhibitory ratio (VGluT1/VGAT) were calculated. 

11. Footprint analysis  

Footprint tests were used to evaluate the walking patterns of the different groups of 

mice, according to the protocol described by Martínez de Lagrán et al. (2004). Black 

waterproof ink was applied to the hind paws of each individual mouse. The animals 

were then placed at one end of a long, narrow tunnel (10 cm x 10 cm x 70 cm), which 

they spontaneously entered. A clean sheet of white paper (50 cm) was placed on the 

floor of the tunnel to record their footprints. Footprints located in the first and last 15 cm 

of the sheet were excluded from the analysis to discard possible artifacts that are 

unrelated to motor behavior. Each animal repeated the task three times, resulting in 

clear footprints on 20 cm of sheet. The average length and width between the paw 

prints and the number of strides per trial were measured. The coefficient of variation 

was calculated as the ratio between the standard deviation and the mean value of five 

consecutive strides with the left paw. 

12. Experimental design and statistical analysis 

All data were analyzed using a two-way (‘karyotype’ x ‘Dyrk1A’) ANOVA. The mean 

values for each experimental group were compared using Bonferroni’s post hoc tests 

when all groups were compared and Student’s t-test when two groups were compared. 

All analyses were performed using SPSS for Windows version 22.0 (Armonk, New 

York, USA). 
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RESULTS  

1. Levels of the Dyrk1A protein in the cerebellum are correlated with the dose of 

the Dyrk1A gene 

First, we determined the levels of the Dyrk1A protein in the cerebellum of each 

experimental group to evaluate whether its expression levels correlated with the 

Dyrk1A gene dosage. As expected, a western blot analysis of cerebellar lysates 

revealed a direct correlation between Dyrk1A protein levels and the number of Dyrk1A 

gene copies the animal carried. Thus, TS +/+/+ animals had higher levels of this 

protein than the CO +/+ mice (ANOVA ‘karyotype’: F(1,20) = 22.73, p < 0.001; figure 1). 

When the number of functional copies of Dyrk1A was reduced by one, the levels of this 

protein were normalized in TS +/+/- animals and reduced in CO +/- animals (‘Dyrk1A’: 

F(1,20) = 11.92, p = 0.003; ‘karyotype x Dyrk1A’: F(1,20) = 0.61, p = 0.44; figure 1). 

2. Knockout of one copy of the Dyrk1A gene reduced the cerebellar volume of 

CO +/- mice, but not of TS +/+/- mice 

When the effect of ‘karyotype’ on cerebellar volume was analyzed, we did not observe 

significant differences between the two groups of TS mice and the two groups of CO 

mice (ANOVA ‘karyotype’: F(1,36) = 3.01, p = 0.092). However, this finding was probably 

because although the CO +/- mice had a lower cerebellar volume (ANOVA ‘Dyrk1A’: 

F(1,36) = 12.86, p < 0.001) than the TS +/+/+ mice (TS +/+/+ vs. CO +/+, t = 7.26, p < 

0.001; figure 2). In fact, knockout of a functional copy of the Dyrk1A gene reduced the 

cerebellar volume of the CO +/- mice, but had no effect on the TS +/+/- animals 

(ANOVA ‘karyotype x Dyrk1A’: F(1,36) = 42.86, p < 0.001). 

3. Reducing the Dyrk1A gene dosage normalized the size of the cerebellar vermis 

in TS +/+/- mice  

TS +/+/+ mice presented a marked reduction in cerebellar size (12.9% smaller than the 

CO +/+ mice, figure 3), but the normalization of the Dyrk1A dosage completely 

rescued this alteration, as shown in the TS +/+/- mice, in which the cerebellar size was 

similar to the CO +/+ group (MANOVA ‘karyotype’ F(1,28) = 0.02, p = 0.889; ‘Dyrk1A’ 

F(1,28) = 0.155. p = 0.697; ‘karyotype x Dyrk1A’ F(1,28) = 3.877, p = 0.007; figure 3). In the 

CO +/- group, knockout of a functional copy of the Dyrk1A gene substantially reduced 

the size of the cerebellum (by 10.7% vs. the CO +/+ group).  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

12 
 

4. The sizes of the GL and the ML were normalized after the number of functional 

copies of the Dyrk1A gene was reduced in TS +/+/- mice 

The thicknesses of the GL and ML were assessed to determine the mechanisms that 

contributed to the marked reduction in the area of the cerebellar vermis in TS +/+/+ 

mice and its recovery in TS +/+/- mice. The GL and ML were 11.8% and 16.8% 

smaller, respectively, in the TS +/+/+ mice than in the CO +/+ animals (figures 4A-4C). 

In addition, the cytoarchitecture of both layers was more organized in the TS +/+/- 

animals, in which the GL was 7.6% larger and the ML 9.6% larger than in the TS +/+/+ 

mice. Although these effects did not reach statistical significance (GL: ANOVA 

‘karyotype’: F(1,28) = 0.67, p = 0.67; ‘Dyrk1A’: F(1,28) = 0.41, p = 0.52; ‘karyotype x 

Dyrk1A’: F(1,28) = 7.27, p = 0.012; ML: ANOVA ‘karyotype’: F(1,28) = 0.70, p = 0.40; 

‘Dyrk1A’: F(1,28) = 2.44, p = 0.13; ‘karyotype x Dyrk1A’: F(1,28) = 22.94, p < 0.001), the 

sizes of the layers in the TS +/+/- mice were not different from the euploid mice.   

Consistent with the reduced cerebellar size observed in CO +/- mice, the GL was 

12.5% thinner and the ML was 18.9% thinner in this group than in the CO +/+ group 

(figures 4A-4C). Based on these results, Dyrk1A also plays a role in cerebellar 

development, and the normalization of its gene dosage in TS +/+/- mice contributed to 

improving the cerebellar phenotype, particularly in the ML. 

5. The Dyrk1A copy number affects the density of GCs and Purkinje cells in the 

cerebellum  

The cell density of the GL was analyzed to determine whether the partial recovery in 

the thickness of the GL observed in TS +/+/- mice was caused by an increase in the 

number of GCs or by changes in cellular packing. As shown in figures 5A and 5B, TS 

+/+/+ mice displayed a markedly lower GC density (p < 0.001). In the TS +/+/- mice, 

knockout of a copy of the Dyrk1A gene produced a nearly complete recovery of the GC 

density. In addition, the CO +/- mice displayed a substantial increase in GC density 

compared with that of the CO +/+ group (ANOVA ‘karyotype’: F(1,28) = 100.582, p < 

0.001; ‘Dyrk1A’: F(1,28) = 55.634, p < 0.001; ‘karyotype x Dyrk1A’: F(1,28) = 0.044, p = 

0.835). 

 

A lower linear density of Purkinje cells was observed in the TS +/+/+ than in the CO +/+ 

mice (figure 6, ANOVA ‘karyotype’: F(1,28) = 2.982, p = 0.096). This deficit disappeared 

after the dosage of the Dyrk1A gene was normalized in TS +/+/- mice. However, the 

reduction in the number of functional copies of this gene in the CO +/- mice did not 

have any effect on the linear density of Purkinje cells (ANOVA ‘Dyrk1A’: F(1,28) = 3.895, 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

13 
 

p = 0.059; ‘karyotype x Dyrk1A’: F(1,28) = 4.511, p = 0.043). In contrast to GCs, Purkinje 

cell numbers were not affected in mice displaying a reduced cerebellar size.  

6. Normalizing the dosage of the Dyrk1A gene restores Purkinje cell dendritic 

arborization in TS mice 

TS +/+/+ mice displayed lower levels of Purkinje cell dendritic arborization than their 

CO +/+ littermates (ANOVA ‘karyotype’: F(1,28) = 0.046; figure 7). However, the 

reduction in the number of copies of the Dyrk1A gene rescued this altered phenotype in 

TS +/+/- mice (ANOVA ‘Dyrk1A’: F(1,28) = 4.49, p = 0.044, figure 7), but did not have 

any effect on CO +/- mice (ANOVA ‘karyotype x Dyrk1A’: F(1,28) = 3.00, p = 0.095).  

7. Inactivating a copy of the Dyrk1A gene reduces the density of markers of 

inhibitory synapses and normalizes the density of markers of excitatory 

synapses in TS mice 

TS mice with two or three functional copies of the Dyrk1A gene displayed an increased 

density of inhibitory synapses (karyotype’: F(1,28) = 5.81, p = 0.023; figures 8A and 8B). 

However, knockout of the Dyrk1A gene had opposite effects on TS and CO mice, as it 

reduced the density of VGAT-positive boutons in TS mice but increased this value in 

CO +/- animals (ANOVA ‘Dyrk1A’: F(1,28) = 0.07, p = 0.78; ‘karyotype x Dyrk1A’: F(1,28) = 

87.83, p < 0.001; figures 8A and 8B). 

In addition, the density of excitatory synapses was markedly reduced in TS +/+/+ mice 

(ANOVA ‘karyotype’: F(1,28) = 30.61, p < 0.001; figures 8A and 8C). The reduction in 

the number of copies of the Dyrk1A gene in TS +/+/- and CO +/- animals increased the 

area occupied by VGluT1-positive boutons in both groups of mice (‘Dyrk1A’: F(1,28) = 

16.55, p < 0.001; ‘karyotype x Dyrk1A’: F(1,28) = 1.26, p = 0.27; figures 8A and 8C). 

When the ratio of excitatory/inhibitory synapse markers was calculated, a marked over-

inhibition was observed in the TS +/+/+ mice (ANOVA ‘karyotype’: F(1,28) = 12.26, p = 

0.002; figures 8A and 8D) that was partially compensated for in the TS +/+/- animals. 

However, CO +/- mice presented a marked reduction in the ratio of excitatory/inhibitory 

synapse markers because they exhibited a larger increase in the area occupied by 

VGAT-positive boutons than the area occupied by VGluT1-positive boutons (ANOVA 

‘Dyrk1A’: F(1,28) = 0.39, p = 0.53; ‘karyotype x Dyrk1A’: F(1,28) = 15.94, p < 0.001; figures 

8A and 8D). Thus, knocking out Dyrk1A partially restored the excitatory/inhibitory 

balance in TS +/+/- mice, but not in CO +/- animals. 

8. Normalizing the Dyrk1A gene copy number ameliorates the altered walking 

pattern observed in TS mice 
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TS +/+/+ mice displayed an abnormal walking pattern, with a shorter stride length 

(ANOVA ‘karyotype’: F(1,28) = 5.22, p = 0.037; figure 9A) and width (F(1,28) = 4.28, p = 

0.05; figure 9B), as well as a greater number of strides (F(1,28) = 10.77, p = 0.005; 

figure 9D).  

When the number of copies of the Dyrk1A gene was reduced by one, these deficits 

were ameliorated in TS +/+/- mice, but no effect was observed on CO +/- animals. The 

TS +/+/- group displayed a normalized stride length (‘Dyrk1A’: F(1,28) = 0.04, p = 0.83; 

‘karyotype x Dyrk1A’: F(1,28) = 11.62, p = 0.004; figure 9B) and stride number (F(1,28) = 

0.82, p = 0.38; ‘karyotype x Dyrk1A’: F(1,28) = 8.65, p = 0.011; figure 9D) that were 

similar to the values observed in CO +/+ animals. In addition, when the coefficient of 

variation was calculated, TS +/+/+ mice, but not TS +/+/- mice, displayed a more 

irregular walking pattern (ANOVA ‘karyotype’: F(1,28) = 0.001, p = 0.97; ‘Dyrk1A’: F(1,28) = 

0.009, p = 0.92; ‘karyotype x Dyrk1A’: F(1,28) = 9.44, p = 0.008; figure 9C). However, 

normalization of the Dyrk1A gene copy number did not have a significant effect on the 

stride width of the TS +/+/- animals (‘Dyrk1A’: F(1,28) = 0.00, p = 0.98; ‘karyotype x 

Dyrk1A’: F(1,28) = 3.17, p = 0.095; figure 9B). These results suggest that, although 

Dyrk1A overexpression might be implicated in these deficits, other factors must also 

play significant roles. 
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DISCUSSION  

The results of this study provide support for the hypothesis that Dyrk1A plays a role in 

the altered morphology of the cerebellum in a mouse model of DS. As previously 

demonstrated, TS +/+/+ mice possess i) a smaller cerebellar volume, ii) vermis, GL and 

ML sizes, in addition to iii) a reduced density of GCs and Purkinje cells. Moreover, in 

TS +/+/+ mice, Purkinje cells exhibit abnormal dendritic arborization, imbalanced 

expression of excitatory and inhibitory synaptic markers and an abnormal gait pattern. 

When the number of functional copies of the Dyrk1A gene was reduced (TS +/+/- 

mice), the cerebellar volume was not modified, but the sizes of the vermis, GL and ML, 

the density of GCs and the density and arborization of Purkinje cells were normalized, 

and the excitatory-inhibitory balance and abnormal walking pattern were improved. 

First, high-resolution MRI revealed a reduction in the cerebellar volume in the TS +/+/+ 

mice than in their euploid littermates (CO +/+ mice). In addition, TS +/+/+ mice 

possessed a smaller cerebellar vermis, GL and ML, potentially because of changes in 

cell density or packaging. The results of the quantitative analysis showed reductions in 

the density of both GCs and Purkinje cells in TS +/+/+ mice. These results confirm 

those of previous studies showing marked reductions in cerebellar volume, the sizes of 

the vermis, GL and ML, and the densities of GCs and Purkinje cells in both murine 

models of DS and individuals with DS because of reductions in both the number of GC 

precursors and the rate of proliferation (Aylward et al., 1987; Rotmensch et al., 1997; 

Baxter et al., 2000; Winter et al., 2000; Olson et al., 2004; O’Doherty et al., 2005; 

Roper et al., 2006; Contestabile et al., 2009; Guidi et al., 2011). 

 

Regarding cerebellar volume, knockout of a functional copy of the Dyrk1A gene 

reduced the cerebellar volume in CO +/- mice, but did not have any effect on TS +/+/- 

animals. Dyrk1A +/- haploinsufficient mice (i.e., CO +/- mice) also display smaller 

brains and reductions in the sizes of different CNS regions (Fotaki et al., 2002). 

Because of the roles of DYRK1A/Dyrk1A in normal brain growth in humans and mice 

are well established (Fotaki et al., 2002; Moeller et al., 2008; van Bon et al., 2011; 

Guedj et al., 2012), we predicted that normalization of its gene dosage (TS +/+/- 

animals) would rescue the cerebellar volume. However, these animals presented a 

smaller cerebellar volume than the CO +/+ mice and were not different from TS +/+/+ 

mice. Thus, the loss of a copy of the Dyrk1A gene in CO +/- mice significantly reduced 

their cerebellar volume, whereas normalization of the gene dosage in TS +/+/- mice did 

not modify this parameter. In these animals, the abnormal expression of other genes 

appears to play a role in the observed changes in cerebellar morphology in TS mice. In 
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this sense, mice that do not exhibit altered Dyrk1A expression but carry extra copies of 

the SETD4, CBR1, CBR3, DOPEY2, MORC3, CHAF1B and CLDN14 genes (i.e., the 

203E8-YAC mouse) display altered cerebellar morphogenesis (Rachidi et al., 2007). 

Thus, Dyrk1A overexpression seems to play a role but does not fully account for the 

changes in cerebellar morphology observed in TS +/+/+ mice.  

Because the normalization of the Dyrk1A gene dosage in TS +/+/- animals rescued the 

size of the zones of the cerebellar cortex that were analyzed in this study (see below), 

Dyrk1A may play a role in the growth of some but not all cerebellar regions, such as 

the deep cerebellar nuclei, which were not evaluated in the present study. The 

development of the murine cerebellum is orchestrated by the interaction of multiple 

signaling pathways, which control the proliferation, migration and differentiation of 

neuronal and glial cell types. The neurogenesis of the vermis, a new evolutionary 

structure of mammals that is absent in other vertebrates, depends on FGF8, but the 

development of cerebellar lobes/hemispheres does not (Butts et al., 2014). In addition, 

the neuroepithelium of the IV ventricle generates all GABAergic neurons under control 

of the NOTCH1 and PTF1a pathway, whereas the rhombic lip, which is regulated by 

BMP/LMX1a signaling, is the source of glutamatergic neurons of cerebellar nuclei 

(Wriend et al., 2015). These pathways might be differentially affected by some of the 

genes overexpressed in TS +/+/+ mice, including Dyrk1A, leading to variations in the 

morphology and function of the different cerebellar structures.  

 

The reduction in the functional copy number of the Dyrk1A gene normalized the sizes 

of the vermis, GL and ML in TS +/+/- mice and reduced their sizes in CO +/- mice. In 

addition, TS +/+/- mice exhibited normal GC and Purkinje cell densities. However, 

although the densities of some neural populations are reduced in Dyrk1A +/- 

haploinsufficient mice (Fotaki et al., 2002), GC and Purkinje cell densities were not 

affected in CO +/- animals. Thus, the reduced size of different cerebellar zones 

observed in this group of mice was not accompanied by changes in cellular packaging.  

 

Both the density and the morphology of Purkinje cells were altered in TS +/+/+ mice. 

Consistent with the abnormal dendritic arborization observed in this neuronal 

population in the present study, Necchi et al. (2008) described morphological 

abnormalities in the axons of Purkinje cells. In the present study, the reduction in the 

functional copy number of the Dyrk1A gene rescued the dendritic arborization defect in 

TS +/+/- mouse Purkinje cells, but did not have a similar effect on CO +/- mice.  
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Therefore, although Dyrk1A seems to play a role in altering cerebellar morphology in 

TS mice, it is not the sole effector of this phenotype, and interactions between this 

gene and other genes or gene products, as well as differences in epigenetic 

modifications, may also contribute to some of the cerebellar alterations observed in 

these mice. Other genes that are triplicated in the TS mouse might play a role in the 

reduction in GC and Purkinje cell densities and the abnormal dendritic configuration 

observed in Purkinje cells. These genes include Pcp4, which encodes a protein 

expressed in Purkinje cells (PEP19) (Cabin et al., 1996; Créau et al., 2016); SETD4, 

CBR1, CBR3, DOPEY2, MORC3, CHAF1B and CLDN14, which play roles in cerebellar 

morphogenesis (Rachidi et al., 2007); and App, which is implicated in Purkinje cell 

differentiation (Ohta et al., 1993). Moreover, the Hsa21 orthologous genes that are 

triplicated in the TS mouse induce the aberrant expression of numerous non-Hsa21 

mRNA transcripts (Saran et al., 2003). Hence, the absence of normal molecular 

interactions in CO +/- mice might be responsible for the different effects on cerebellar 

morphology observed when the copy number of the Dyrk1A gene was reduced by one 

in TS +/+/- and CO +/- mice.  

 

The brains of TS mice are characterized by an imbalance between excitatory and 

inhibitory transmission (see Martínez-Cué et al., 2014). In the present study, the area 

of the cerebellum that expressed a marker of inhibitory synapses (VGAT) was larger 

and the area that expressed a marker of excitatory synapses (VGluT1) was smaller in 

TS +/+/+ mice. Dyrk1A has been reported to contribute to this imbalance. In mice with 

a higher dosage of Dyrk1A, inhibitory synapse markers occupy a larger area and 

excitatory synapse markers occupy a smaller area in various areas of the brain and 

cerebellum (García-Cerro et al., 2014; Souchet et al., 2014; 2015). In support of these 

findings, the reduction in the copy number of Dyrk1A (TS +/+/- mice) normalized the 

areas in the cerebellum occupied by both inhibitory and excitatory boutons. A recent 

study provided further support for the hypothesis that Dyrk1A plays a hyperinhibitory 

role in several areas of the brain (Souchet et al., 2015). The administration of Pol60, an 

extract containing the DYRK1A inhibitor epigallocatechin gallate (EGCG), restores 

components of excitatory/inhibitory balance in the cortex and hippocampus, but not the 

cerebellum, of Ts65Dn and mBACtgDyrk1a mice. The authors hypothesize that the 

lack of effects on this structure might be due to a reduced accessibility of the drug or to 

the presence of different regulatory mechanisms in the cerebellum (Souchet et al., 

2015). 
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Although Dyrk1A appears to contribute to the excitatory/inhibitory imbalance observed 

in TS +/+/+ animals, other genes, such as Synj1 (Voronov et al., 2008), Olig1 and Olig2 

(Chakrabarti et al., 2010), have been shown to play important roles in this phenotype.  

 
Finally, fine motor control is perturbed in individuals with DS (Latash and Corcos, 1991; 

Latash et al., 2002), and motor alterations are well established in some mouse models 

of DS that overexpress Dyrk1A (Altafaj et al., 2001). However, controversy exists 

regarding whether TS animals present altered motor activity. Some studies have 

observed altered motor coordination in TS mice (Costa et al., 1999; Gutierrez-

Castellanos, 2013), whereas others have reported normal (Escorihuela et al., 1998; 

Baxter et al., 2000) or improved (Hyde et al., 2001) motor coordination. In the present 

study, we performed a more demanding version of the rotarod test (data not shown) 

described by Costa et al. (1999), but we did not observe any differences in motor 

coordination between TS +/+/+ animals and any of the other groups of mice.  

 

However, deficits have been reported in the basic gait of TS +/+/+ animals (Costa et 

al., 1999). In the present study, these animals displayed an abnormal walking pattern 

that was characterized by a shorter stride length and width and a larger number of 

strides. The reduction in the copy number of the Dyrk1A gene (TS +/+/- mice) 

ameliorated these deficits but did not have a similar effect on CO +/- animals, 

suggesting that the structural benefits produced by normalizing the copy number of the 

Dyrk1A gene in TS mice may be partially responsible for these motor improvements.  

 

Based on accumulating evidence, the cerebellum is involved in higher cognitive 

functions, including procedural learning in spatial tasks (Rondi-Reig and Burguière, 

2005; Galiano et al., 2013; Rochefort et al., 2013). TS +/+/+ mice and transgenic 

Dyrk1A-overexpressing mice exhibit severe impairments in these cognitive domains 

(Smith et al., 1997; Altafaj et al., 2001; Ahn et al., 2006; Bartesaghi et al., 2011). 

Pharmacological manipulations that normalize cerebellar morphology in TS +/+/+ mice 

improve spatial learning and memory (Das et al. 2013), suggesting that the cerebellar 

hypoplasia observed in trisomic animals may contribute to some of their cognitive 

deficits. 

 
In summary, the Dyrk1A gene is involved in several of the morphological and functional 

cerebellar phenotypes observed in TS mice. However, normalization of the Dyrk1A 

gene dosage did not fully restore the cerebellar volume and only partially ameliorated 
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the altered walking pattern observed in these mice, suggesting that other genes or 

gene products are implicated in these cerebellar anomalies.  
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FIGURE CAPTIONS 
 
Figure 1. Normalization of the copy number of the Dyrk1A gene reduced levels of 
the Dyrk1A protein in the cerebellum of TS and CO mice. Representative images 
and western blot analysis of the levels of the Dyrk1A protein in the cerebellum of CO 
+/+, CO +/-, TS +/+/+ and TS +/+/- mice. Differences between CO +/-, TS +/+/+ and 
+/+/- animals are expressed relative to the values observed in CO (+/+) mice (defined 
as 100%) (B). GAPDH was used as an internal loading control. **: p < 0.01 TS +/+/+ 
vs. CO +/+; #: p < 0.01 TS +/+/+ vs. TS +/+/- or CO +/+ vs. CO +/- (n = 24 in B). 
Significance was determined using ANOVAs and Bonferroni’s post hoc test. 

Figure 2. Normalization of the Dyrk1A gene dosage did not rescue the reduced 
cerebellar volume observed in TS +/+/- mice. Representative MRIs of the horizontal, 
sagittal and coronal planes of the four groups of mice. The scale bar corresponds to 1 
mm (A). Means ± S.E.M. of the percentage differences in the cerebellar volume 
between TS +/+/+, TS +/- and CO +/- mice and CO +/+ mice (100%) (B). ***: p < 0.001 
TS +/+/+ vs. CO +/+ Student’s t-test; ###: p < 0.001 CO +/- vs. CO +/+ (n = 40 in B). 
Significance was determined using ANOVAs and Bonferroni’s post hoc test. 

Figure 3. Normalization of the Dyrk1A gene dosage rescued the size of the 

cerebellar vermis in TS +/+/- mice. Representative photographs of the cerebellar 

vermis of the four groups of mice. Tissues were stained with DAPI. The scale bar 

corresponds to 200 µm (A). Means ± S.E.M. of the percentage differences in the sizes 

of the cerebellar vermis between each experimental group and the CO +/+ group 

(100%) (B). **: p < 0.01, TS +/+/+ vs. CO +/+; #: p < 0.05, CO +/+ vs. CO +/- (n = 32 in 

B). Significance was determined using ANOVAs and Bonferroni’s post hoc test. 

Figure 4. Normalization of the Dyrk1A gene dosage partially restored the 

cerebellar architecture in TS +/+/- mice. Representative images of sections of the GL 

and ML, which are separated by the Purkinje cell layer (PL), in the four groups of 

animals. Sections were stained using DAPI. The white dotted line indicates the end of 

the ML. The scale bar corresponds to 50 µm (A). Means ± S.E.M. of the percentage 

differences in the thickness of the GL (B) and ML (C) compared to those of CO +/+ 

mice. **: p < 0.01, ***: p < 0.001 TS +/+/+ vs. CO +/+; ##: p < 0.01, ###: p < 0.001, CO 

+/+ vs. CO +/- (n = 32 in B and C). Significance was determined ANOVAs and 

Bonferroni’s post hoc test. 

Figure 5. Normalization of the Dyrk1A gene dosage restored the density of GCs 

in TS mice. Representative images of GCs stained with DAPI. The scale bar 

corresponds to 10 µm (A). Means ± S.E.M. of the estimated densities of GCs in each 

group (B). ***: p < 0.001, TS +/+/+ vs. CO +/+; ###: p < 0.001, CO +/+ vs. CO +/- and 

TS +/+/+ vs. TS +/+/- (n = 32 in B). Significance was determined using ANOVAs and 

Bonferroni’s post hoc test.  

Figure 6. Normalization of the Dyrk1A gene dosage restored the density of 
Purkinje cells in the cerebellum in TS mice. Representative images of Purkinje cells 
stained with DAPI and PI (A). Means ± S.E.M. of the estimated densities of Purkinje 
cells in each experimental group (B). **: p < 0.01 TS +/+/+ vs. CO +/+; #: p < 0.05 CO 
+/+ vs. CO +/- (n = 32 in B). Significance was determined using ANOVAs and 
Bonferroni’s post hoc test. 

Figure 7. Normalization of the Dyrk1A gene dosage restored the dendritic 

arborization of Purkinje cells in TS mice. Representative images of calbindin 

immunostaining in cerebellar slices of the four groups of animals. The scale bar 

represents 50 µm (A). Means ± S.E.M. of the densities of calbindin-stained cells in CO 
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+/+, CO +/-, TS +/+/+ and TS +/+/- mice. *: p < 0.05 TS +/+/+ vs. CO +/+; ##: p < 0.01 

TS +/+/+ vs. TS +/+/- (n = 32 in B). Significance was determined using ANOVAs and 

Bonferroni’s post hoc tests. 

Figure 8. Normalization of the copy number of the Dyrk1A gene reduced the 

density GABAergic synapse markers and increased the density of glutamatergic 

synapse markers in the cerebellum of TS mice. Representative confocal images of 

sections immunostained for VGAT, VGluT1 and both VGAT and VGluT1. The scale bar 

represents 5 µm (A). Means ± SEM of the percentage of area occupied by VGAT-

positive (B), and VGluT1-positive boutons (C) and the ratio (D) of these areas in the 

cerebellum of TS +/+/+, TS +/+/-, CO +/+ and CO +/- mice. **: p < 0.01, ***: p < 0.001 

TS +/+/+ vs. CO +/+; #: p < 0.05, ##: p < 0.01, ###: p < 0.001 TS +/+/+ vs. TS +/+/- (n 

= 32 in B, C and D). Significance was determined using ANOVAs and Bonferroni’s post 

hoc tests. 

Figure 9. Normalization of the Dyrk1A copy number reduced alterations in the 

walking pattern of TS mice. Means ± S.E.M. of stride length (A), stride width (B), the 

coefficient of variation (C) and the number of strides (D) in TS +/+/+, TS +/+/-, CO +/+ 

and CO +/- mice. Representative images of the walking pattern of an animal from each 

group (E). *: p < 0.05, **: p < 0.01 TS +/+/+ vs. CO +/+; #: p < 0.05, ##: p < 0.01 TS 

+/+/+ vs. TS +/+/- (n = 32 in A, B, C and D). Significance was determined using 

ANOVAs and Bonferroni’s post hoc tests. 
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