43 research outputs found
FORG3D: Force-directed 3D graph editor for visualization of integrated genome scale data
<p>Abstract</p> <p>Background</p> <p>Genomics research produces vast amounts of experimental data that needs to be integrated in order to understand, model, and interpret the underlying biological phenomena. Interpreting these large and complex data sets is challenging and different visualization methods are needed to help produce knowledge from the data.</p> <p>Results</p> <p>To help researchers to visualize and interpret integrated genomics data, we present a novel visualization method and bioinformatics software tool called FORG3D that is based on real-time three-dimensional force-directed graphs. FORG3D can be used to visualize integrated networks of genome scale data such as interactions between genes or gene products, signaling transduction, metabolic pathways, functional interactions and evolutionary relationships. Furthermore, we demonstrate its utility by exploring gene network relationships using integrated data sets from a <it>Caenorhabditis elegans </it>Parkinson's disease model.</p> <p>Conclusion</p> <p>We have created an open source software tool called FORG3D that can be used for visualizing and exploring integrated genome scale data.</p
Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene
Journal ArticleDecreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 "A" allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol- stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity
Whole Grain Products, Fish and Bilberries Alter Glucose and Lipid Metabolism in a Randomized, Controlled Trial: The Sysdimet Study
Due to the growing prevalence of type 2 diabetes, new dietary solutions are needed to help improve glucose and lipid metabolism in persons at high risk of developing the disease. Herein we investigated the effects of low-insulin-response grain products, fatty fish, and berries on glucose metabolism and plasma lipidomic profiles in persons with impaired glucose metabolism.Altogether 106 men and women with impaired glucose metabolism and with at least two other features of the metabolic syndrome were included in a 12-week parallel dietary intervention. The participants were randomized into three diet intervention groups: (1) whole grain and low postprandial insulin response grain products, fatty fish three times a week, and bilberries three portions per day (HealthyDiet group), (2) Whole grain enriched diet (WGED) group, which includes principally the same grain products as group (1), but with no change in fish or berry consumption, and (3) refined wheat breads (Control). Oral glucose tolerance, plasma fatty acids and lipidomic profiles were measured before and after the intervention. Self-reported compliance with the diets was good and the body weight remained constant. Within the HealthyDiet group two hour glucose concentration and area-under-the-curve for glucose decreased and plasma proportion of (n-3) long-chain PUFAs increased (False Discovery Rate p-values <0.05). Increases in eicosapentaenoic acid and docosahexaenoic acid associated curvilinearly with the improved insulin secretion and glucose disposal. Among the 364 characterized lipids, 25 changed significantly in the HealthyDiet group, including multiple triglycerides incorporating the long chain (n-3) PUFA.The results suggest that the diet rich in whole grain and low insulin response grain products, bilberries, and fatty fish improve glucose metabolism and alter the lipidomic profile. Therefore, such a diet may have a beneficial effect in the efforts to prevent type 2 diabetes in high risk persons.ClinicalTrials.gov NCT00573781
Elastic and pH responsive hybrid interfaces created with engineered resilin and nanocellulose
We investigated how a genetically engineered resilin fusion protein modifies cellulose surfaces. We characterized the pH-responsive behavior of a resilin-like polypeptide (RLP) having terminal cellulose binding modules (CBM) and showed its binding to cellulose nanofibrils (CNF). Characterization of the resilin fusion protein at different pHs revealed substantial conformational changes of the protein, which were observed as swelling and contraction of the protein layer bound to the nanocellulose surface. In addition, we showed that employment of the modified resilin in cellulose hydrogel and nanopaper increased their modulus of stiffness through a cross-linking effect.Peer reviewe
Self-Assembling Protein-Polymer Bioconjugates for Surfaces with Antifouling Features and Low Nonspecific Binding
A new method is demonstrated for preparing antifouling and low nonspecific adsorption surfaces on poorly reactive hydrophobic substrates, without the need for energy-intensive or environmentally aggressive pretreatments. The surface-active protein hydrophobin was covalently modified with a controlled radical polymerization initiator and allowed to self-assemble as a monolayer on hydrophobic surfaces, followed by the preparation of antifouling surfaces by Cu(0)-mediated living radical polymerization of poly(ethylene glycol) methyl ether acrylate (PEGA) performed in situ. By taking advantage of hydrophobins to achieve at the same time the immobilization of protein A, this approach allowed to prepare surfaces for IgG1 binding featuring greatly reduced nonspecific adsorption. The success of the surface modification strategy was investigated by contact angle, XPS, and AFM characterization, while the antifouling performance and the reduction of nonspecific binding were confirmed by QCM-D measurements.Peer reviewe
Graphene Biosensor Programming with Genetically Engineered Fusion Protein Monolayers
We demonstrate a label-free biosensor concept based on specific receptor modules, which provide immobilization and selectivity to the desired analyte molecules, and on charge sensing with a graphene field effect transistor. The receptor modules are fusion proteins in which small hydrophobin proteins act as the anchor to immobilize the receptor moiety. The functionalization of the graphene sensor is a single-step process based on directed self-assembly of the receptor modules on a hydrophobic surface. The modules are produced separately in fungi or plants and purified before use. The modules form a dense and well-oriented monolayer on the graphene transistor channel and the receptor module monolayer can be removed, and a new module monolayer with a different selectivity can be assembled in situ. The receptor module monolayers survive drying, showing that the functionalized devices can be stored and have a reasonable shelf life. The sensor is tested with small charged peptides and large immunoglobulin molecules. The measured sensitivities are in the femtomolar range, and the response is relatively fast, of the order of one second. (Graph Presented).Peer reviewe
In search of bridging knowledge between disciplines:about spatial solutions to environmental satisfaction in knowledge work
Abstract
The purpose of this conceptual paper is to discuss our interdisciplinary knowledge production process, which seeks ways to bridge knowledge between disciplines to produce more coherent knowledge about the impact of spatial solutions on environmental satisfaction. The workplace intervention study on work environmental satisfaction and well-being brought up novel needs to broaden interdisciplinary knowledge production to avoid a fragmentation of knowledge. We are a group of researchers working with intervention-based research aiming to produce interdisciplinary knowledge to better understand the impact of spatial solutions on work environmental satisfaction and well-being. Our expertise extends from the knowledge of work and organisational psychology, environmental psychology and psychophysiology to architectural design and human-computer interaction. A spatial intervention built for running company premises provided the framework for reflecting all the research activities conducted before and during the design intervention. While using a broad variety of quantitative and qualitative methods, we found out the need to advance our understanding of the interdisciplinary knowledge production mechanisms to do our share of preventing a fragmentation of knowledge. This conceptual paper reports our remarks of the interdisciplinary knowledge production in the context of an intervention-based research project. We see value in reporting the recognized needs for seeking convergence between methods and concepts. In our temporary research project, we recognised the possibilities to bring each other’s disciplines closer together and to customise common methods and broaden meanings of used concepts together with the relevant stakeholders. Discussing the bridging knowledge production process is, as such, valuable, making visible the variety of boundaries in between disciplines and approaches which are overshadowed when reporting the narrow field-specific outcomes