926 research outputs found
Evidence of Andreev bound states as a hallmark of the FFLO phase in -(BEDT-TTF)Cu(NCS)
Superconductivity is a quantum phenomena arising, in its simplest form, from
pairing of fermions with opposite spin into a state with zero net momentum.
Whether superconductivity can occur in fermionic systems with unequal number of
two species distinguished by spin, atomic hyperfine states, flavor, presents an
important open question in condensed matter, cold atoms, and quantum
chromodynamics, physics. In the former case the imbalance between spin-up and
spin-down electrons forming the Cooper pairs is indyced by the magnetic field.
Nearly fifty years ago Fulde, Ferrell, Larkin and Ovchinnikov (FFLO) proposed
that such imbalanced system can lead to exotic superconductivity in which pairs
acquire finite momentum. The finite pair momentum leads to spatially
inhomogeneous state consisting of of a periodic alternation of "normal" and
"superconducting" regions. Here, we report nuclear magnetic resonance (NMR)
measurements providing microscopic evidence for the existence of this new
superconducting state through the observation of spin-polarized quasiparticles
forming so-called Andreev bound states.Comment: 6 pages, 5 fig
Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule
N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system
Two Energy Scales and two Quasiparticle Dynamics in the Superconducting State of Underdoped Cuprates
The superconducting state of underdoped cuprates is often described in terms
of a single energy-scale, associated with the maximum of the (d-wave) gap.
Here, we report on electronic Raman scattering results, which show that the gap
function in the underdoped regime is characterized by two energy scales,
depending on doping in opposite manners. Their ratios to the maximum critical
temperature are found to be universal in cuprates. Our experimental results
also reveal two different quasiparticle dynamics in the underdoped
superconducting state, associated with two regions of momentum space: nodal
regions near the zeros of the superconducting gap and antinodal regions. While
antinodal quasiparticles quickly loose coherence as doping is reduced, coherent
nodal quasiparticles persist down to low doping levels. A theoretical analysis
using a new sum-rule allows us to relate the low-frequency-dependence of the
Raman response to the temperature-dependence of the superfluid density, both
controlled by nodal excitations.Comment: 16 pages, 5 figure
Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target
111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA
Nonlinear Sigma Model for Disordered Media: Replica Trick for Non-Perturbative Results and Interactions
In these lectures, given at the NATO ASI at Windsor (2001), applications of
the replicas nonlinear sigma model to disordered systems are reviewed. A
particular attention is given to two sets of issues. First, obtaining
non-perturbative results in the replica limit is discussed, using as examples
(i) an oscillatory behaviour of the two-level correlation function and (ii)
long-tail asymptotes of different mesoscopic distributions. Second, a new
variant of the sigma model for interacting electrons in disordered normal and
superconducting systems is presented, with demonstrating how to reduce it,
under certain controlled approximations, to known ``phase-only'' actions,
including that of the ``dirty bosons'' model.Comment: 25 pages, Proceedings of the NATO ASI "Field Theory of Strongly
Correlated Fermions and Bosons in Low - Dimensional Disordered Systems",
Windsor, August, 2001; to be published by Kluwe
Evolutionary relationships among barley and <i>Arabidopsis</i> core circadian clock and clock-associated genes
The circadian clock regulates a multitude of plant developmental and metabolic processes. In crop species, it contributes significantly to plant performance and productivity and to the adaptation and geographical range over which crops can be grown. To understand the clock in barley and how it relates to the components in the Arabidopsis thaliana clock, we have performed a systematic analysis of core circadian clock and clock-associated genes in barley, Arabidopsis and another eight species including tomato, potato, a range of monocotyledonous species and the moss, Physcomitrella patens. We have identified orthologues and paralogues of Arabidopsis genes which are conserved in all species, monocot/dicot differences, species-specific differences and variation in gene copy number (e.g. gene duplications among the various species). We propose that the common ancestor of barley and Arabidopsis had two-thirds of the key clock components identified in Arabidopsis prior to the separation of the monocot/dicot groups. After this separation, multiple independent gene duplication events took place in both monocot and dicot ancestors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00239-015-9665-0) contains supplementary material, which is available to authorized users
AglH, a thermophilic UDP‑<i>N</i>‑acetylglucosamine‑1‑phosphate:dolichyl phosphate GlcNAc‑1‑phosphotransferase initiating protein<i> N</i>‑glycosylation pathway in <i>Sulfolobus acidocaldarius</i>, is capable of complementing the eukaryal Alg7
AglH, a predicted UDP-GlcNAc-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase, is initiating the protein N-glycosylation pathway in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. AglH successfully replaced the endogenous GlcNAc-1-phosphotransferase activity of Alg7 in a conditional lethal Saccharomyces cerevisiae strain, in which the first step of the eukaryal protein N-glycosylation process was repressed. This study is one of the few examples of cross-domain complementation demonstrating a conserved polyprenyl phosphate transferase reaction within the eukaryal and archaeal domain like it was demonstrated for Methanococcus voltae (Shams-Eldin et al. 2008). The topology prediction and the alignment of the AglH membrane protein with GlcNAc-1-phosphotransferases from the three domains of life show significant conservation of amino acids within the different proposed cytoplasmic loops. Alanine mutations of selected conserved amino acids in the putative cytoplasmic loops II (D(100)), IV (F(220)) and V (F(264)) demonstrated the importance of these amino acids for cross-domain AlgH activity in in vitro complementation assays in S. cerevisiae. Furthermore, antibiotic treatment interfering directly with the activity of dolichyl phosphate GlcNAc-1-phosphotransferases confirmed the essentiality of N-glycosylation for cell survival
Aberrant Cortical Activity in Multiple GCaMP6-Expressing Transgenic Mouse Lines
Transgenic mouse lines are invaluable tools for neuroscience but, as with any technique, care must be taken to ensure that the tool itself does not unduly affect the system under study. Here we report aberrant electrical activity, similar to interictal spikes, and accompanying fluorescence events in some genotypes of transgenic mice expressing GCaMP6 genetically encoded calcium sensors. These epileptiform events have been observed particularly, but not exclusively, in mice with Emx1-Cre and Ai93 transgenes, of either sex, across multiple laboratories. The events occur at >0.1 Hz, are very large in amplitude (>1.0 mV local field potentials, >10% df/f widefield imaging signals), and typically cover large regions of cortex. Many properties of neuronal responses and behavior seem normal despite these events, although rare subjects exhibit overt generalized seizures. The underlying mechanisms of this phenomenon remain unclear, but we speculate about possible causes on the basis of diverse observations. We encourage researchers to be aware of these activity patterns while interpreting neuronal recordings from affected mouse lines and when considering which lines to study
Modification by high pressure of fluctuation paraconductivity of underdoped HoBa2Cu3O7-δ single crystals
In this work, we investigate the effect of high pressure on the conductivity in the basal plane of the high temperature super conducting (HTSC) single crystals HoBa2Cu3O7-δ. It is determined that the excess conductivity Δσ(T) of the HoBa2Cu3O7- δ single crystals in the temperature interval near the critical temperature (Tc) is described within the framework of the Aslamazov-Larkin theoretical model. It is shown that the evolution of the transverse coherence length ξc(0) in the case of application/removal of high pressure is largely determined by the “relaxation” pressure effect during prolonged exposure of the sample under load at room temperature.The final publication is available at Springer via 10.1007/s10854-016-4797-6Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders<br/
- …
