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Abstract The circadian clock regulates a multitude of

plant developmental and metabolic processes. In crop

species, it contributes significantly to plant performance

and productivity and to the adaptation and geographical

range over which crops can be grown. To understand the

clock in barley and how it relates to the components in the

Arabidopsis thaliana clock, we have performed a system-

atic analysis of core circadian clock and clock-associated

genes in barley, Arabidopsis and another eight species

including tomato, potato, a range of monocotyledonous

species and the moss, Physcomitrella patens. We have

identified orthologues and paralogues of Arabidopsis genes

which are conserved in all species, monocot/dicot differ-

ences, species-specific differences and variation in gene

copy number (e.g. gene duplications among the various

species). We propose that the common ancestor of barley

and Arabidopsis had two-thirds of the key clock compo-

nents identified in Arabidopsis prior to the separation of the

monocot/dicot groups. After this separation, multiple

independent gene duplication events took place in both

monocot and dicot ancestors.

Keywords Arabidopsis thaliana � Hordeum vulgare

(barley) � Circadian clock � Reciprocal BLAST �
Homologue

Introduction

Most living organisms optimise their day/night responses

by measuring time and using this information to organize

their physiology and morphology in anticipation of daily

changes (Chen and McKnight 2007; Green et al. 2002;

Okamura 2004). As sessile organisms, plants also rely on

the circadian clock to optimise several physiological pro-

cesses, such as expression of chlorophyll biosynthetic

genes after dawn, to optimise chlorophyll content and

carbon fixation (Dodd et al. 2005; Harmer et al. 2000;

Haydon et al. 2013). The diversity of processes controlled

by the circadian clock also reflects the number of genes

under its control. Expression of about one-third of the

Arabidopsis genome is regulated by the circadian clock

(Covington et al. 2008). Only a relatively small number of

genes establish and maintain the circadian rhythm of the

clock. These core clock components are present in each

cell and consist of a complex network of genes regulated

by transcriptional feedback loops, post-transcriptional and

post-translational modifications (Gallego and Virshup

2007; James et al. 2012; McClung 2014; Sanchez et al.

2010; Troein et al. 2009) (Fig. 1). The framework of the

Arabidopsis circadian clock known as the interlocking-loop

model comprises at least three interlocking gene expression

feedback loops (Harmer 2010; Locke et al. 2006; Pokhilko

et al. 2010; Zeilinger et al. 2006).

The central loop is formed by CIRCADIAN CLOCK

ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL

(LHY) and TIMING OF CHLOROPHYLL A/B BINDING
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PROTEIN 1 (TOC1—also known as PSEUDO RESPONSE

REGULATOR 1, PRR1) (Alabadı́ et al. 2001). CCA1 and

LHY are closely related and partially redundant myeloblas-

tosis (MYB) transcription factors that accumulate at dawn and

bind to the promoter region of TOC1, inhibiting its expression.

Recent studies suggest that TOC1 is responsible for reducing

CCA1 and LHY expression (Gendron et al. 2012; Huang et al.

2012; Pokhilko et al. 2012). During the morning, CCA1 and

LHY play parallel roles in the central loop by inducing

expression of the transcriptional repressors PSEUDO

RESPONSE REGULATOR 7 and 9 (PRR7 and PRR9),

which along with PSEUDO RESPONSE REGULATOR 5

(PRR5) inhibit expression of CCA1 and LHY (Locke et al.

2006; Nakamichi et al. 2010; Zeilinger et al. 2006). This

molecular link between CCA1/LHY and PRR7/9/5 during the

morning constitutes a second feedback loop called the

‘morning loop’.

Further regulatory clock control is carried out by CCA1

and LHY through transcriptional inhibition of EARLY

FLOWERING 3 and 4 (ELF3 and ELF4), LUX AR-

RHYTHMO (LUX, also known as PHYTOCLOCK 1,

PCL1), and GIGANTEA (GI) genes (Nagel and Kay 2012).

In the ‘evening loop’, TOC1 represses expression of PRR5,

PRR7, PRR9, LUX, GI and ELF4 (Gendron et al. 2012;

Huang et al. 2012). An important component of the

evening loop is the Evening Complex (EC). The EC is

composed of EARLY FLOWERING 3 (ELF3), ELF4, and

LUX and it represses transcription of PRR9 (Chow et al.

2012). Interestingly, LUX represses its own expression

(Helfer et al. 2011). Further post-translational regulation

takes place in the evening, such as GI degradation by ELF3

(Yu et al. 2008) and F-box protein ZEITLUPE (ZTL)

stabilisation by GI, allowing ZTL to control TOC1 protein

degradation (Kim et al. 2007).

The circadian clock can be entrained by certain cues, for

instance light (photoperiod) and temperature (Hotta et al.

2007), which is tightly linked to plant adaptation to specific

environments (Michael et al. 2003). To address the impact

of the clock in crop species, such as barley, one approach is

to gain an understanding of key clock components and their

interactions by examining how widely clock genes are

conserved. Most information on plant circadian clocks is

available for Arabidopsis (Nagel and Kay 2012; Nakamichi

2011). Translation of knowledge will not be straight for-

ward due to differences in clock control between monocots

and Arabidopsis, such as rhythmicity of growth (Matos

et al. 2014; Poiré et al. 2010) and different versions of the

clock operating in different parts of the plant (Endo et al.

2014; James et al. 2008). Understanding the evolutionary

relationships among clock genes will aid the development

of clock models for other species but it is important to note

that the identification of barley homologous genes does not

necessarily imply conserved clock function. To date, some

clock genes have been identified in monocots such as

Brachypodium distachyon (Higgins et al. 2010) and Zea

mays (Wang et al. 2011) with most information on rice

(Hayama et al. 2003; Higgins et al. 2010; Iwamoto et al.

2009; Murakami et al. 2007; Onai and Ishiura 2005; Shin

et al. 2004). For barley, circadian rhythms have been

observed at diverse levels including at transcript and pro-

tein abundance, and physiological processes (Lillo 2006;

Martı́nez et al. 2003; Nagasaka et al. 2009; Vallelian-

Bindschedler et al. 1998). Diurnal and circadian expression

analyses have been reported for HvLHY (HvCCA1),

HvPPD-H1, HvPRR73, HvPRR59, HvPRR95, HvGI,

HvTOC1, HvLUX and HvELF3 (Campoli et al. 2012b,

2013; Dunford et al. 2005; Faure et al. 2012; Higgins et al.

2010; Turner et al. 2005). Only three barley clock genes

have been well characterised using mutant plants: Ppd-H1,

ELF3 and LUX (Campoli et al. 2013; Faure et al. 2012;

Turner et al. 2005; Zakhrabekova et al. 2012). The Ppd-

H1/PRR37 allele is the major determinant of photoperiod

response in barley and is the putative AtPRR7 orthologue

(Turner et al. 2005). Mutations in the barley Ppd-H1/

PRR37 (PRR7) and ELF3 genes affect important traits,

such as flowering time (Faure et al. 2012; Stracke et al.

2009; Turner et al. 2005; Zakhrabekova et al. 2012) and

low-temperature tolerance (Fowler et al. 2001).
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Fig. 1 Feedback loops of the Arabidopsis clock. Simplified sche-

matic diagram of the 24-h Arabidopsis clock. Feedback loops of the

core clock genes are represented in the centre. Full lines represent

transcriptional feedback loops, whereas dashed lines represent post-

translational regulation. Arrows represent activation, while arrows

with blunt ends represent repression. The diagram represents a

compilation of gene regulation from numerous publications referred

to in the ‘‘Introduction’’. For simplicity, the PRR3 component was not

included in the above regulatory network. Expression peaks of clock

genes are represented at different times of the day and night in the

outer circle (Nakamichi 2011)
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The availability of high-confidence barley gene

sequences (Matsumoto et al. 2011; Mayer et al. 2012) now

allows the identification of barley orthologues of clock and

clock-associated genes. Here we have performed a sys-

tematic analysis of clock genes in ten different plant spe-

cies and thereby identified the genomic sequences of 21

putative barley homologues of Arabidopsis core circadian

clock genes and selected clock-associated genes and pro-

pose an evolutionary history for barley and Arabidopsis

clock genes from a common ancestor.

Materials and Methods

Cross-Species Reciprocal BLAST

To identify plant orthologues of the Arabidopsis clock

genes, systematic cross-species reciprocal BLAST searches

were performed using default settings and gene sequences

of ten different plant species: Arabidopsis, tomato, potato,

barley, Brachypodium distachyon, sorghum, wheat, maize,

rice and moss (Physcomitrella patens) (Table S1). First, a

BLAST search (Altschul et al. 1990) was carried out using

Arabidopsis gene sequences against various databases

(Table S1) to identify putative orthologous sequences.

Next, reciprocal BLAST analysis was performed using the

top hit from all species against the Arabidopsis database.

Subsequently, cross-species reciprocal BLAST analysis

was performed using the top hit from all species against

each species’ databases. When the top hit of a reciprocal

BLAST successfully identified the original Arabidopsis

sequence and the top hits from all other databases, these

were taken as orthologues. Any additional hits with an E-

value similar to the top hit were also subjected to reciprocal

BLASTs. When the second/third/etc. best hits successfully

identified the original Arabidopsis sequence and their

orthologues in all other species, these were taken as

paralogues.

However, when a reciprocal BLAST with the top hit

identified a different Arabidopsis gene from the original

candidate sequence, (1) the newly identified Arabidopsis

gene(s) was used in cross-species reciprocal BLAST ana-

lysis; and (2) all gene family members of the new and

original Arabidopsis candidate genes were also subjected

to cross-species reciprocal BLASTs. Similarly, in this

analysis with ‘additional’ Arabidopsis sequences, when the

top hit of a cross-species BLAST reciprocally identified the

top hit from another species, these were taken as ortho-

logues. This analysis identified genes in Arabidopsis which

were related to the initial candidate clock gene and their

putative orthologues in other species. These cross-species

reciprocal BLAST analyses of ‘additional’ Arabidopsis

genes also considered any additional hits with E-value

similar to the top hit, subjecting them to cross-species

reciprocal BLASTs (as mentioned above). Overall, these

analyses identified true orthologues and duplicated genes in

the tested species.

Gene sequences and identifiers were taken from the

databases described in Table S1. Schematic diagrams of

genomic structures were initially made using the Exon–

Intron Graphic Maker program (http://wormweb.org/exo

nintron). In some cases, the annotated exon/intron gene

structures did not generate full length ORFs, when com-

pared to homologous genes. Therefore, when necessary, re-

annotation of genomic sequences was performed based on:

(1) cDNA, EST and PUT (PlantGDB-assembled Unique

Transcripts) data available for the related species; (2) the

presence of GT and AG dinucleotides for intron boundaries

(50 and 30 splice site, respectively); (3) ORF maintenance of

each exon; and (4) the annotation of orthologous mRNA/

protein sequences.

Phylogenetic Analysis

Nucleotide sequence alignments were performed such that

they preserved the codon structure of putative coding

sequences (CDS). For this, nucleotide alignments were

based on the alignments of their deduced protein sequence

using the ClustalW program (Larkin et al. 2007; Tamura

et al. 2013). Gene tree estimation was performed using the

neighbour-joining (NJ) method (Saitou and Nei 1987)

available on MEGA6 software (Tamura et al. 2013). The

moss P. patens was used as an outgroup for angiosperm

species, and moss genes, when present, were used to root

the phylogenetic trees. Statistical support for each branch

on phylogenetic trees was generated from the bootstrap test

(2,000 replicates; values shown when[50 %) (Felsenstein

1985). The evolutionary distances and branch lengths were

computed using the Maximum Composite Likelihood

method (Tamura et al. 2004). Pseudogenes were not ana-

lysed in order to prevent poorly supported topologies on

reconstruction of phylogeny from gene families, as sug-

gested by Zimmer et al. (2007).

Results

Identification of Barley Core Clock and Clock-

Associated Genes by Reciprocal BLAST

The Arabidopsis clock and clock-associated genes,

including selected flowering-related genes: CCA1, LHY,

TOC1 (PRR1), GI, ELF3, ELF4, PRR7, PRR3, PRR9,

PRR5, LUX (PCL1), FKF1, ZTL, CHE (TCP21), GRP7

(CCR2), GRP8, CAB2, CO and FT were selected for a

comparative approach to identify and confirm the genomic

110 J Mol Evol (2015) 80:108–119

123

http://wormweb.org/exonintron
http://wormweb.org/exonintron


sequences of related genes in barley. Barley and Arabi-

dopsis share a common ancestor but they have diverged

considerably since their separation around 140 million

years ago (Mya) (Chaw et al. 2004; Moore et al. 2007).

Since orthology determination becomes more difficult

when species are evolutionarily distant (Prosdocimi et al.

2009; Yu and Hinchcliffe 2011), additional species with

whole genome sequence information from both dicot and

monocot groups were included in the comparative analysis.

These species were tomato, potato, moss (P. patens) and

another five grasses: Brachypodium distachyon, sorghum,

wheat, maize and rice (Table S1). The comparative

approach comprised multiple cross-species reciprocal

BLASTs (Altschul et al. 1990) as described in ‘‘Materials

and methods’’. These systematic analyses identified the

range of species which contained true orthologues and a

comprehensive list of the duplicated genes in the analysed

species (Table 1, S2–S6). In a few cases, false duplicated

genes, previously described in the literature, are described

in Supplementary Note 1.

The Arabidopsis clock genes showed variation in their

ability to identify true orthologues providing some infor-

mation on the clock gene components in different species

and their evolution. This is illustrated by considering genes

with very different results from the analysis: LUX, LHY/

CCA1 and ELF4. AtLUX identified true orthologues in all

nine species analysed by cross-species reciprocal BLAST,

including another paralogue in Arabidopsis (AtBOA) and

four gene copies in P. patens (Fig. 2a; Table S2). The latter

species also has a number of particular features regarding

its clock flowering-related genes where GI, FKFI, ZTL, CO

and FT are present in all flowering plants but absent in P.

patens (Tables S2, S4 and S6). At the other extreme is

AtCCA1. This gene identified a gene in each of the nine

species but it had no reciprocal hits with any species ana-

lysed. In fact, the reciprocal BLASTs all identified AtLHY

Table 1 Circadian clock and clock-associated genes in Arabidopsis and their barley homologues

Arabidopsis homologues Barley homologues

Paralogues Orthologues/

Paraloguesa
Orthologues Orthologues Orthologues/

Paraloguesa
Paralogues

AtCCA1 (At2g46830) – AtLHY (At1g01060) HvLHY (MLOC_14118) – –

AtBOA (At5g59570) – AtLUX (At3g46640) HvLUX (MLOC_37446) – –

EEC? – AtELF3 (At2g25930) HvELF3 (MLOC_78552b) – –

– – AtGI (At1g22770) HvGI (MLOC_70638b) – –

– – AtTOC1 (At5g61380) HvTOC1 (MLOC_52387) – –

– AtPRR5 (At5g24470)

AtPRR9 (At2g46790)

– – HvPRR95 (MLOC_57021)

HvPRR59 (MLOC_62596b)

–

AtPRR3 (At5g60100) – AtPRR7 (At5g02810) HvPpd-H1 (MLOC_81154) – HvPRR73

(MLOC_12732)

AtLPK2 (At2g18915) – AtZTL (At5g57360) – HvZTLa (MLOC_44010)

HvZTLb (MLOC_20007)

–

– – AtFKF1 (At1g68050) HvFKF1 (MLOC_53725) – –

AtGRP8 (At4g39260) – AtGRP7 (At2g21660) – HvGRP7a (MLOC_17819b)

HvGRP7b (MLOC_59695b)

–

At3g02380 (AtCOL2) At5g15840 (CO)

At5g15850 (COL1)

– – HvCO1 (MLOC_6921b)

HvCO2 (MLOC_75496b)

–

AtTSF (At4g20370) – AtFT (At1g65480) – HvFT1 (MLOC_68576)

HvFT2 (MLOC_10172b)

–

– At2g40080 (ELF4)

At2g29950

(ELF4-like1)

– – –

At1g17455

(ELF4-like4)

At1g72630

(ELF4-like2)

– At2g06255

(ELF4-like3)

HvELF4-like3

(MLOC_70937)

– HvELF4-likeA

(MLOC_58590)

a Determination of one-to-one gene orthologue/paralogue not defined
b MLOC represents partial sequence of the gene
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instead of AtCCA1. When AtLHY was used, cross-species

reciprocal BLASTs were successful with all ten species

(Fig. 2b) suggesting that they contained true orthologues of

AtLHY but no orthologues of AtCCA1. Therefore, barley

and six other plants have a single LHY counterpart, whereas

LHY gene duplications possibly occurred independently in

maize, P. patens and Arabidopsis, the latter giving rise to

AtCCA1.

Other genes, for example ELF4, only had cross-species

reciprocal hits with dicot species suggesting that it is spe-

cific to dicots (Fig. 2c). In this analysis, the initial BLAST

using the AtELF4 sequence identified sequences in mono-

cots that did not identify AtELF4 reciprocally but instead

identified AtELF4-like3. Using this gene and all known

AtELF4 gene family members, orthologues and paralogues

of ELF4-like3 genes in all species analysed were identified

(Tables S5 and S6). Barley and wheat each have two genes

in this family. Cross-species reciprocal BLAST using the

single-exon genes AtCHE and AtCAB2 did not identify

orthologues in any of the species analysed (Supplementary

Note 2).

Genomic Structure of Barley and Arabidopsis Clock

Genes

Having identified barley orthologues of clock genes, we

were then able to examine the conservation of exon–intron

organisation to gain further support for the relationships

between orthologues. Genomic sequences of genes related

to Arabidopsis clock genes were downloaded from the

various plant databases for analysis and correctly annotated

or re-annotated as necessary. The 21 genes which were

(re)annotated are shown in Tables S2–S6.

The genomic structures of barley and Arabidopsis genes

are generally well conserved in their exon/intron

organisation (e.g. TOC1 in Fig. 3a). However, differences

in the barley orthologues are mainly in the size of introns,

which are generally much larger in barley, and in the UTR

sequences. A clear example is the 50 UTR of LHY in barley,

which is considerably longer and has a complex multi-exon

structure, while AtLHY only has two 50 UTR introns

(Fig. 3b). In the coding region, AtCCA1, AtLHY and

HvLHY have a highly conserved gene structure, with the

exception of one additional intron found in AtCCA1 and

AtLHY (intron 5 or 6, respectively) when compared with

HvLHY (Fig. 3b). The genomic structures of HvPRR37/

Ppd-H1, GI and ELF3 have been analysed previously

(Dunford et al. 2005; Turner et al. 2005; Zakhrabekova

et al. 2012). An important consideration remains that the

barley gene space is not complete (Mayer et al. 2012) and

the extensive in silico analysis conducted here may still

have missed possible orthologues or parts of genes (e.g. the

50 UTRs of HvLHY and HvPRR95).

Phylogenetic Analyses of Clock Genes

To demonstrate and confirm the degree of relatedness of

identified orthologous genes, phylogenetic trees were

generated (Fig. 4a, b; Figs. S1–S3).

ZTL and FKF1 Orthologues

Gene members of the LOV (light, oxygen or voltage) blue

light receptor subfamily, ZTL and FKF1, were identified in

all flowering plants analysed (Fig. 4a). In Arabidopsis,

FKF1 is functionally and evolutionary diverged from ZTL,

which might have started sometime after euphyllophyte

(ferns and seed plants) speciation (Suetsugu and Wada

2013). The ZTL gene has been duplicated in both the

ancestor of monocots and in Arabidopsis. As a result,
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Fig. 2 Robust analysis in the identification of clock orthologues.

Cross-species reciprocal BLAST diagram of a LUX, b LHY and

c ELF4 genes. Arrows indicate direction of BLAST analysis, i.e. a

sequence from one database was used to identify orthologous

sequences in the database of another species
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monocots have ZTLa and ZTLb genes, while Arabidopsis

has ZTL and the recent copy, LPK2 (Lou et al. 2012). The

exact relationships between both monocot ZTL genes and

the dicot ZTL could not be determined, i.e. the true

orthologue of AtZTL in monocots is either ZTLa or ZTLb.

Monocots and dicots have maintained a single copy of

FKF1 except for maize, which has two copies due to a

recent duplication.

ELF4 and ELF4-like3 Orthologues

The in silico analyses suggest two subgroups for the ELF4-

like family: ELF4, which includes AtELF4-like1 (Table

S5), and ELF4-like2/3/4 (Table S6). ELF4 family members

are found only in dicot species and they are single-exon

genes. ELF4-like2/3/4 family members are found in all

plants analysed and most of them have a 50 UTR intron.

Our analyses suggest that the ancestor of land plants con-

tained one copy of the ELF4-like gene, most likely an

orthologue of AtELF4-like3. This gene was duplicated in

the ancestor of flowering plants, which then contained both

ELF4-like3 and the new copy, ELF4. Monocots lost the

ELF4 gene, while dicot species duplicated this gene mul-

tiple times (Fig. 4b). The ELF4-like3 gene was duplicated

twice in monocots, but barley and wheat may have lost one

of the copies. Dicots also had one or two duplication events

from the ELF4-like3 gene and its subsequent copies.

PRR Orthologues

Most flowering plants analysed have five PRR genes. The

TOC1 gene is duplicated in maize and both Solanum spe-

cies. P. patens has four PRRs, which are very closely

related to the PRRs of angiosperms. It was not possible to

determine PRR orthologues due to very complex results

from BLAST and phylogenetic analysis (Fig. S1). The only

evidence observed is that the ancestor of flowering plants

had TOC1, PRR3/7 and PRR9/5 genes. After the diver-

gence of monocots and dicots, both ancestors indepen-

dently duplicated PRR3/7 and PRR9/5 genes.

LHY, LUX and GRP7 Orthologues

Phylogenetic analyses confirmed true orthologues of At-

LHY (Fig. S2a), AtLUX (Fig. S2b) and AtGRP7 (Fig. S2c)

in all species analysed. In particular, several paralogues of

the single-intron AtGRP7 gene were identified in all spe-

cies analysed. In silico analyses suggest that the ancestor of

land plants contained one copy of the GRP7 gene. Two

independent duplication events occurred within the P.

patens branch, generating PpGRP1, PpGRP2 and

Pp1s136_70. The GRP7 gene has undergone a series of

independent duplications within dicots and once in mono-

cots. In Arabidopsis, it is likely that this duplication gave

rise to AtGRP8, according to cross-species BLASTs. In

Pseudo-receiver domain CCT domain
200 bp

a

b
AtCCA1

(James et al 2012)

AtLHY
1 2 3 4 5 6 7 8 9

HvLHY 
(Contig_1567295)

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8

MYB domain 200 bp

AtTOC1

HvTOC1
1 2 3 4 5 6

1 2 3 4 5 6

...

Fig. 3 Genomic structure of

a TOC1 (PRR1) and b LHY and

CCA1 in Arabidopsis (At) and

barley (Hv). Exons are

numbered; 50 and 30 UTRs are

open boxes; coding sequences

are dark boxes, except domain-

encoding exons. There may be

further 50 UTR sequence

upstream of the HvLHY exon 1

designated in the Figure (dotted

line) which has not yet been

fully sequenced
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monocots, there are two copies of the GRP7 gene, which

are hereafter called GRP7a and GRP7b. Rice has lost

GRP7a and duplicated GRP7b. Wheat seems to be the only

species with a third copy, TaGRP7c, but the predicted

protein is around half the size of the other GRPs in

monocots and may therefore be a pseudogene or an error

from sequencing and consensus sequence formation, and

was eliminated from further analyses.

CO and FT Orthologues

Homologous members of the AtCO subfamily were iden-

tified in all flowering plants analysed, including barley

(Fig. S3a). Protein alignment and BLAST analyses suggest

that the ancestor of flowering plants contained one copy of

a CO-related gene, which is the orthologue of AtCO or

AtCOL1. Two independent duplication events have

occurred within the Arabidopsis branch, which currently

has AtCOL1, AtCO and AtCOL2. Monocots have one

duplication event of the original CO-related gene, giving

rise to both CO1 and CO2. Rice and maize have lost their

CO2 gene copy. The exact relationship between both CO1

and CO2 genes in monocots and the dicot CO-related genes

could not be determined, but homologues are clearly

present. Similarly, the true orthologue of AtFT in monocots

could not be determined, but at least two homologues (FT1

and FT2) are present in all monocots analysed (Fig. S3b).

Rice in particular has two copies of the FT1 gene (OsFTL2

and OsFTL3).

ELF3 and GI Orthologues

Homologues of AtELF3 were identified in all species

analysed. Paralogues were also observed and are probably

due to a series of duplication events of the ELF3 gene. All

in silico analyses suggest that the ancestor of land plants
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Fig. 4 a Phylogenetic tree of ZTL and FKF1 genes. Due to the lack

of complete sequence information for the TaZTLb gene, the partial

wheat ZTLb CDS from PUT43520 was used to represent wheat. Since

P. patens does not contain a true orthologue of ZTL or FKF1, the root

was placed on the FKF1 family branch. b Phylogenetic trees of the

ELF4-like family. Due to the lack of complete CDS data for the

TaELF4-like3, the partially related cDNA from PUT145474 was used

to represent this wheat branch. In constructing the trees, all gaps and

missing data were eliminated from sequence alignments. Genes that

do not follow expected topology are shown in grey. Evolutionary

distances are presented in number of base substitutions per site.

Barley genes are highlighted with a box
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contained one copy of the ELF3 gene. Two independent

duplication events occurred within the P. patens branch,

which has three homologues of ELF3. The original ELF3

gene was also duplicated in the ancestor of flowering

plants, which then contained both the ELF3 gene and the

new copy, ESSENCE OF ELF3 CONSENSUS (EEC) gene.

However, this hypothesis for the origin of EEC has low

support from phylogenetic analysis (59 % likelihood, Fig.

S3c) and must be treated with care. Monocots have lost the

EEC gene and duplicated ELF3, creating the ELF3a and

ELF3b genes. Temperate grasses (Pooideae) lost the

ELF3b gene, whereas rice lost ELF3a. Interestingly, the

ELF3b copy present in the rice genome has undergone a

recent duplication. The exact relationships between both

ELF3 alleles in monocots and the dicot ELF3 could not be

determined. Lastly, true orthologues of GI were identified

and confirmed in all flowering plants analysed (Fig. S3d).

In summary, we have identified the genomic sequences

of 21 putative barley homologues of Arabidopsis core

circadian clock genes and selected associated genes and

eliminated any similar unrelated sequences, i.e. sequences

that are not descended from a common ancestral sequence.

A single Arabidopsis true orthologue of the clock genes

LHY, TOC1, GI, ELF3, LUX and FKF1 was identified in

barley. Additionally, the ancestor of flowering plants pos-

sibly had a single copy of PRR3/7, PRR9/5, FT, CO/COL1,

ZTL and GRP7 genes and after divergence of monocots and

dicots both ancestors independently duplicated and main-

tained these genes. Orthologues of the AtCHE, AtELF4 and

AtCAB2 gene families were not identified in barley or other

monocot species.

Discussion

In Silico Identification of Clock Homologues

Putative homologues of Arabidopsis circadian clock genes

were identified in tomato, potato, P. patens, Brachypodium,

sorghum, wheat, maize, rice and barley (Tables S2–S6).

Forty of those genes in monocots, including six in barley

(HvZTLa, HvZTLb, HvGRP7b, HvELF4-like3, HvFKF1

and HvCABa), were hitherto unknown. Many genes were

already known and had previously been used in simple

analyses or, less commonly, a fully characterised study (see

Tables S2–S6). The identification of previously described

genes in various species confirmed that the in silico method

used here is appropriate for identifying homologues, as

well as confirming the identity of the previously described

genes. Moreover, the comprehensive list of species with

duplicated gene copies gives further confidence to the gene

duplications identified in barley and has helped to identify

some incorrect duplication events (Supplementary Note 1).

The identification of orthologous, paralogous and lost

genes may provide information on the function of these

genes and how they impact the growth habit of particular

species. For example, CO and FT are key genes in the reg-

ulation of flowering time. AtCO is a member of a subfamily

from Group Ia of the COL family (Griffiths et al. 2003;

Valverde 2011). In silico analyses suggest Arabidopsis has

three members from this subfamily, whereas barley has two:

HvCO1 (Campoli et al. 2012a; Griffiths et al. 2003) and

HvCO2 genes (Griffiths et al. 2003). Other monocots also

have two gene copies, except rice [also suggested by

Cockram et al. (2012)] and maize. These species require

short day photoperiods to flower, while barley, wheat,

Arabidopsis and potato, require long days. Therefore, the

absence of the CO2 gene copy in rice and maize may have

had a critical role in their domestication (Cockram et al.

2012; Miller et al. 2008). Similarly, the central component

in mediating the onset of flowering, the FT gene, was present

in the angiosperm ancestor and contributed to the evolution

of flowering plants (Klintenäs et al. 2012; Pin and Nilsson

2012). AtFT is a member of the PHOSPHATIDYLETHA-

NOLAMINE-BINDING PROTEIN (PEBP) FT-like family

and it forms a subfamily with TWIN SISTER OF FT (TSF)

(Faure et al. 2007; Kobayashi et al. 1999). Monocots have

two members from this subfamily: FT1 and FT2 through

duplication, but neither is an orthologue of AtTSF. The

monocot FT1/FT2 duplication occurred after the divergence

between the grasses and Arabidopsis. Therefore, this

duplication is independent of the FT/TSF duplication in

Arabidopsis, as suggested previously (Li and Dubcovsky

2008). Interestingly, FT copy number variation in cereals

plays an important role in the regulation of plant flowering

and development (Nitcher et al. 2013).

Dicot-Specific Clock Genes

Orthologues of four Arabidopsis genes from the initial

candidate list were not identified in barley and most other

plant species: ELF4, CAB2, CHE and CCA1. These are

likely to be dicot- or Arabidopsis-specific genes. For ELF4,

in particular, only members of the ELF4-like2/3/4 sub-

clade have been found in monocots (Boxall et al. 2005;

Higgins et al. 2010; Murakami et al. 2007). However,

Kolmos et al. (2009) suggested that AtELF4 and AtELF4-

like1 are the closest homologues of ELF4-like genes in

monocots and that HvELF4-likeA fully complemented the

elf4 loss-of-function phenotype in Arabidopsis, suggesting

conserved functionality (Kolmos et al. 2009). It is note-

worthy that some ELF4 family members were missing

from most monocot species they analysed, which might

have influenced the topology that suggested such homol-

ogy. The lack of orthologues of the clock-associated genes

AtCAB2 and AtCHE is discussed in Supplementary Note 2.
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CCA1, along with LHY, plays an important role in the

regulation of the circadian rhythm in Arabidopsis, but the

presence of both counterparts in the genome of other

plant species does not seem to be a common feature.

Barley and six other plants analysed here have only one

LHY/CCA1 gene, and this suggestion is also confirmed in

studies of barley (Campoli et al. 2012b), rice (Murakami

et al. 2007) and Brachypodium (Higgins et al. 2010).

This raises the question of whether most species contain

an orthologue of LHY or CCA1? Some analyses indicate

that LHY, as opposed to CCA1, is present in most plant

species (Lou et al. 2012; Takata et al. 2009; Yon et al.

2012). For instance: (1) cross-species reciprocal BLAST

is possible only for AtLHY, not AtCCA1; (2) Solanum

species have only one gene, which is very similar in

sequence to LHY; (3) CHE, the transcriptional repressor

of CCA1 is also an Arabidopsis-specific gene; (4) CCA1

is a casein kinase II (CK2) target in Arabidopsis, whereas

in rice the OsCK2 orthologue does not target OsCCA1,

probably because OsCCA1 does not contain the correct

amino acid for interaction, suggesting again that Os-

CCA1 is not a true orthologue of AtCCA1 but of AtLHY

(Ogiso et al. 2010) and (5) AtLHY and HvLHY have

similar transcriptional and post-transcriptional responses

to lower temperature transitions, as opposed to AtCCA1

behaviour (Calixto et al., manuscript in preparation).

Therefore, most plant species do not contain CCA1 and

LHY but have only one gene, most probably LHY, which

is necessary for maintenance of the circadian rhythm and

plant survival. In Arabidopsis, where LHY has been

duplicated, the gene copies have diverged such that both

are important for the maintenance of the circadian

rhythm.

Evolution of Clock Genes

Within angiosperms, in both monocots and dicots, a strong

similarity exists among their clock components, architec-

ture and functions (Song et al. 2010). To test for evolu-

tionary homology of monocot and dicot clock genes,

several investigations have used different approaches, such

as phylogenetic analysis, studies of segmental duplication

and functional gene assessments through gene expression

studies and complementation tests (suggesting conserved

biochemical function). For example, knockdown and

overexpression of LHY, ELF3 and GI genes from Lemna

gibba plants indicated these genes are functionally con-

served with Arabidopsis and rice genes (Serikawa et al.

2008).

Here we propose a common evolutionary genetic history

that gave rise to both barley and Arabidopsis clock genes

from a common ancestor (Fig. 5). This hypothesis is based

on robust in silico searches and phylogenetic analysis.

Homologues of the core clock components LHY, TOC1,

PRR7 (PRR37 in monocots), PRR9/5, GI, LUX, ELF3,

FKF1 and ZTL and the clock-related genes ELF4-like3,

COL1/CO, FT and GRP7 were present in the common

ancestor of monocots and dicots. Therefore, about 60 % of

barley clock genes are true orthologues of the Arabidopsis

clock genes. TOC1, FKF1, LUX and GI are single copy

genes for most monocots and dicots. One exception is in

Arabidopsis, which has a duplicated copy of AtLUX, At-

BOA. Of the core Arabidopsis clock genes, CCA1, CHE

and ELF4 are absent in barley. ELF4, in particular, was

present in the ancestor but has been lost in monocots. As

our analysis has utilised Arabidopsis clock genes as a start

point, we would be unable to detect clock components

present only in monocots.

Our studies with the basal land plant P. patens and

angiosperm species suggest the circadian clock in the

ancestor of land plants had a smaller set of clock genes

when compared to Arabidopsis. It included the genes LHY/

CCA1, PRR-like, ELF3, LUX, GRP7 and ELF4-like3 but

lacked homologues of clock- and flowering-related genes

AtGI, AtZTL, AtFKF1, AtELF4s, AtCOs and AtFTs which

were found in all plants studied here except moss. Inter-

estingly, the lack of those clock genes might reduce the

moss clock into one single loop, from the three integrated

feedback loop model of the Arabidopsis clock (Holm et al.

2010). Regarding the PRR-like gene, it is suggested that the
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Fig. 5 Schematic diagram of the proposed evolutionary history of

circadian clock components of barley, Arabidopsis and their putative

common ancestor. Independent duplication events are represented by

fine diagonal lines. The diagram at the bottom right is related to the

main diagram and it refers to the numbers of genes from each group
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ancestor of land plants possessed orthologues of AtTOC1,

AtPRR7/3, AtPRR9/5 and PpPRR1/2/3/4 in its genome, but

only the PpPRR1/2/3/4 gene was maintained in the moss

lineage, whereas angiosperms lost only the PpPRR1/2/3/4

orthologue (Satbhai et al. 2010).

Multiple independent clock gene duplications have occurred

in both monocot and dicot ancestors, generating paralogues.

Paralogues could be functionally equivalent to missing genes

(e.g. ELF4-likeA) or deviate in terms of function/regulation.

ELF3, ELF4-like3, FT, CO/COL1, GRP7, ZTL, PRR7 and

PRR9/5 were independently duplicated and maintained in both

monocots and dicots, which is an interesting example of con-

vergent evolution. In the ancestor of moss, LHY/CCA1, ELF3,

LUX, PpPRR1/2/3/4 and GRP7 were independently duplicated

several times as supported by studies in diverse plant species,

including barley (Campoli et al. 2012b; Cockram et al. 2012;

Higgins et al. 2010; Holm et al. 2010; McClung 2010; Satbhai

et al. 2010). Convergent evolution also interfered with our

phylogenetic analysis and the determination of one-to-one gene

homology. For example, it is not certain which monocot gene,

PRR95 or PRR59, is the orthologue of AtPRR9/5 (Takata et al.

2010).

A large proportion of gene duplication events has been

generated by whole genome duplication (WGD) events

(Paterson et al. 2010). The evolution of angiosperm gen-

omes has been characterised by WGD events, typically

accompanied by considerable gene loss (Paterson et al.

2010). However, plants have preferentially retained clock

genes, which is consistent with the gene dosage hypothesis

(Lou et al. 2012). This hypothesis predicts that genes

encoding proteins engaged in dose-sensitive interactions,

such as transcriptional or signalling networks, cannot be

reduced back to single copies once all interacting partners

are simultaneously duplicated in a WGD because the

imbalance associated with this loss is likely to decrease

fitness (Schnable et al. 2012). Additionally, paralogues

could also deviate in terms of function or regulation. An

example of sub-functionalisation is the PRR3 gene in

Arabidopsis, which is expressed in the vasculature (Para

et al. 2007), while other PRRs exhibit widespread expres-

sion. An excellent example of WGD coupled with retention

of dose-sensitive duplicated clock genes has recently been

reported for the evolution of Brassica rapa (Lou et al.

2012). In this work, it is suggested that such phenomena

have permitted the evolution of increasingly complex cir-

cadian clock mechanisms (Lou et al. 2012). Clock com-

plexity probably allowed for increased entrainment

efficiency and temporal regulation of output pathways

(Tauber et al. 2004), which has contributed to adaptation of

plants to different environments. In summary, the avail-

ability of the barley gene space has allowed us to identify

barley clock genes and propose their evolution in relation

to the model plant Arabidopsis.
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