308 research outputs found

    Correction of cone index for soil water content differences in a coastal plain soil

    Get PDF
    Soil penetration resistance (cone index) varies with water content. The field variation of water content could mask treatment differences. The correction of cone index data to a single water content would help prevent this. We used equations from TableCurve software and from the literature to correct cone indices for differences in soil water contents. Data were taken from two field experiments where cotton (Gossypium hirsutum L.) was grown using conventional and conservation tillage without irrigation, and beans (Phaseolus vulgaris L.) were grown using conventional tillage with microirrigation. Boundary conditions based on hard, dry and soft. wet soils were imposed on the equations. Equations fit the data with coefficients of determination ranging from 0.55 to 0.92 and error mean squares from 1.37 to 6.35. After correction, cone index dependence on water content was reduced. A single-equation correction did not always fit the data across all treatments. Separate corrections, based on treatment, might be required. When corrections required multiple equations, differences may be real or may be a manifestation of the correction differences. In this case, the correction may not be feasible (unless some future work can coordinate different equations and assure a uniform correction)

    Phase Behavior of Bent-Core Molecules

    Full text link
    Recently, a new class of smectic liquid crystal phases (SmCP phases) characterized by the spontaneous formation of macroscopic chiral domains from achiral bent-core molecules has been discovered. We have carried out Monte Carlo simulations of a minimal hard spherocylinder dimer model to investigate the role of excluded volume interations in determining the phase behavior of bent-core materials and to probe the molecular origins of polar and chiral symmetry breaking. We present the phase diagram as a function of pressure or density and dimer opening angle ψ\psi. With decreasing ψ\psi, a transition from a nonpolar to a polar smectic phase is observed near ψ=167\psi = 167^{\circ}, and the nematic phase becomes thermodynamically unstable for ψ<135\psi < 135^{\circ}. No chiral smectic or biaxial nematic phases were found.Comment: 4 pages Revtex, 3 eps figures (included

    Surface tension of the isotropic-nematic interface

    Full text link
    We present the first calculations of the pressure tensor profile in the vicinity of the planar interface between isotropic liquid and nematic liquid crystal, using Onsager's density functional theory and computer simulation. When the liquid crystal director is aligned parallel to the interface, the situation of lowest free energy, there is a large tension on the nematic side of the interface and a small compressive region on the isotropic side. By contrast, for perpendicular alignment, the tension is on the isotropic side. There is excellent agreement between theory and simulation both in the forms of the pressure tensor profiles, and the values of the surface tension.Comment: Minor changes; to appear in Phys. Rev.

    Thermodynamics of the Stockmayer fluid in an applied field

    Get PDF
    The thermodynamic properties of the Stockmayer fluid in an applied field are studied using theory and computer simulation. Theoretical expressions for the second and third virial coefficients are obtained in terms of the dipolar coupling constant (, measuring the strength of dipolar interactions as compared to thermal energy) and dipole-field interaction energy (α, being proportional to the applied field strength). These expressions are tested against numerical results obtained by Mayer sampling calculations. The expression for the second virial coefficient contains terms up to λ4, and is found to be accurate over realistic ranges of dipole moment and temperature, and over the entire range of the applied field strength (from zero to infinity). The corresponding expression for the third virial coefficient is truncated at λ3, and is not very accurate: higher order terms are very difficult to calculate. The virial coefficients are incorporated in to a thermodynamic theory based on a logarithmic representation of the Helmholtz free energy. This theory is designed to retain the input virial coefficients, and account for some higher order terms in the sense of a resummation. The compressibility factor is obtained from the theory and compared to results from molecular dynamics simulations with a typical value λ = 1. Despite the mathematical approximations of the virial coefficients, the theory captures the effects of the applied field very well. Finally, the vapour-liquid critical parameters are determined from the theory, and compared to published simulation results; the agreement between the theory and simulations is good. © 2015 Taylor & Francis

    Clustering transitions in vibro-fluidized magnetized granular materials

    Full text link
    We study the effects of long range interactions on the phases observed in cohesive granular materials. At high vibration amplitudes, a gas of magnetized particles is observed with velocity distributions similar to non-magnetized particles. Below a transition temperature compact clusters are observed to form and coexist with single particles. The cluster growth rate is consistent with a classical nucleation process. However, the temperature of the particles in the clusters is significantly lower than the surrounding gas, indicating a breakdown of equipartition. If the system is quenched to low temperatures, a meta-stable network of connected chains self-assemble due to the anisotropic nature of magnetic interactions between particles.Comment: 4 pages, 5 figure

    Criticality in confined ionic fluids

    Full text link
    A theory of a confined two dimensional electrolyte is presented. The positive and negative ions, interacting by a 1/r1/r potential, are constrained to move on an interface separating two solvents with dielectric constants ϵ1\epsilon_1 and ϵ2\epsilon_2. It is shown that the Debye-H\"uckel type of theory predicts that the this 2d Coulomb fluid should undergo a phase separation into a coexisting liquid (high density) and gas (low density) phases. We argue, however, that the formation of polymer-like chains of alternating positive and negative ions can prevent this phase transition from taking place.Comment: RevTex, no figures, in press Phys. Rev.

    A molecular dynamics study on the equilibrium magnetization properties and structure of ferrofluids

    Full text link
    We investigate in detail the initial susceptibility, magnetization curves, and microstructure of ferrofluids in various concentration and particle dipole moment ranges by means of molecular dynamics simulations. We use the Ewald summation for the long-range dipolar interactions, take explicitly into account the translational and rotational degrees of freedom, coupled to a Langevin thermostat. When the dipolar interaction energy is comparable with the thermal energy, the simulation results on the magnetization properties agree with the theoretical predictions very well. For stronger dipolar couplings, however, we find systematic deviations from the theoretical curves. We analyze in detail the observed microstructure of the fluids under different conditions. The formation of clusters is found to enhance the magnetization at weak fields and thus leads to a larger initial susceptibility. The influence of the particle aggregation is isolated by studying ferro-solids, which consist of magnetic dipoles frozen in at random locations but which are free to rotate. Due to the artificial suppression of clusters in ferro-solids the observed susceptibility is considerably lowered when compared to ferrofluids.Comment: 33 pages including 12 figures, requires RevTex

    Thermodynamics of Electrolytes on Anisotropic Lattices

    Full text link
    The phase behavior of ionic fluids on simple cubic and tetragonal (anisotropic) lattices has been studied by grand canonical Monte Carlo simulations. Systems with both the true lattice Coulombic potential and continuous-space 1/r1/r electrostatic interactions have been investigated. At all degrees of anisotropy, only coexistence between a disordered low-density phase and an ordered high-density phase with the structure similar to ionic crystal was found, in contrast to recent theoretical predictions. Tricritical parameters were determined to be monotonously increasing functions of anisotropy parameters which is consistent with theoretical calculations based on the Debye-H\"uckel approach. At large anisotropies a two-dimensional-like behavior is observed, from which we estimated the dimensionless tricritical temperature and density for the two-dimensional square lattice electrolyte to be Ttri=0.14T^*_{tri}=0.14 and ρtri=0.70\rho^*_{tri} = 0.70.Comment: submitted to PR

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Phylogeny of snakes (Serpentes): combining morphological and molecular data in likelihood Bayesian and parsimony analyses

    Get PDF
    Copyright © 2007 The Natural history MuseumThe phylogeny of living and fossil snakes is assessed using likelihood and parsimony approaches and a dataset combining 263 morphological characters with mitochondrial (2693 bp) and nuclear (1092 bp) gene sequences. The ‘no common mechanism’ (NCMr) and ‘Markovian’ (Mkv) models were employed for the morphological partition in likelihood analyses; likelihood scores in the NCMr model were more closely correlated with parsimony tree lengths. Both models accorded relatively less weight to the molecular data than did parsimony, with the effect being milder in the NCMr model. Partitioned branch and likelihood support values indicate that the mtDNA and nuclear gene partitions agree more closely with each other than with morphology. Despite differences between data partitions in phylogenetic signal, analytic models, and relative weighting, the parsimony and likelihood analyses all retrieved the following widely accepted groups: scolecophidians, alethinophidians, cylindrophiines, macrostomatans (sensu lato) and caenophidians. Anilius alone emerged as the most basal alethinophidian; the combined analyses resulted in a novel and stable position of uropeltines and cylindrophiines as the second-most basal clade of alethinophidians. The limbed marine pachyophiids, along with Dinilysia and Wonambi, were always basal to all living snakes. Other results stable in all combined analyses include: Xenopeltis and Loxocemus were sister taxa (fide morphology) but clustered with pythonines (fide molecules), and Ungaliophis clustered with a boine-erycine clade (fide molecules). Tropidophis remains enigmatic; it emerges as a basal alethinophidian in the parsimony analyses (fide molecules) but a derived form in the likelihood analyses (fide morphology), largely due to the different relative weighting accorded to data partitions.Michael S. Y. Lee, Andrew F. Hugall, Robin Lawson & John D. Scanlo
    corecore