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ARTICLE

Thermodynamics of the Stockmayer fluid in an applied field
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The thermodynamic properties of the Stockmayer fluid in an applied field are studied using
theory and computer simulation. Theoretical expressions for the second and third virial coef-
ficients are obtained in terms of the dipolar coupling constant (λ, measuring the strength of
dipolar interactions as compared to thermal energy) and dipole-field interaction energy (α,
being proportional to the applied field strength). These expressions are tested against nu-
merical results obtained by Mayer sampling calculations. The expression for the second virial
coefficient contains terms up to λ4, and is found to be accurate over realistic ranges of dipole
moment and temperature, and over the entire range of the applied field strength (from zero to
infinity). The corresponding expression for the third virial coefficient is truncated at λ3, and
is not very accurate: higher order terms are very difficult to calculate. The virial coefficients
are incorporated in to a thermodynamic theory based on a logarithmic representation of the
Helmholtz free energy. This theory is designed to retain the input virial coefficients, and ac-
count for some higher order terms in the sense of a resummation. The compressibility factor
is obtained from the theory and compared to results from molecular dynamics simulations
with a typical value λ = 1. Despite the mathematical approximations of the virial coefficients,
the theory captures the effects of the applied field very well. Finally, the vapour-liquid critical
parameters are determined from theory, and compared to published simulation results; the
agreement between theory and simulation is good.

Keywords: Stockmayer fluid; applied field; theory; simulation

1. Introduction

One of the most widely studied, simple models of polar materials is based on
the Stockmayer interaction potential. In this model, the constituent particles are
Lennard-Jones (LJ) particles carrying a central point dipole moment µ. Thus, the
interaction potential between any pair of particles i and j is given by a sum of LJ
and dipolar (d) contributions as follows.

uij = uLJ
ij + ud

ij (1)

uLJ
ij = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(2)

ud
ij =

(µi · µj)
r3
ij

− 3(µi · rij)(µj · rij)
r5
ij

(3)
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Here ε is the LJ interaction well depth, σ is the particle diameter, and rij = |rij | is
the length of the centre-centre vector rij . Historically, this model was introduced to
describe the virial coefficients and thermodynamic properties of ‘simple’ polar fluids
such as ammonia or water, in which the dispersion and dipole-dipole interactions
affect the bulk properties to comparable extents [1–4].

Such models are useful for describing the properties of polar particles in general
[5], including colloidal magnetised particles such as those used to make ferrofluids
[6]. In these materials, the particles are roughly spherical, nanometre-sized, homo-
geneously magnetised grains, sterically stabilised and suspended in an inert carrier
liquid. Approximating the particles to be perfect spheres, the dipolar interaction
is precisely that given in Equation (3). In some ferrofluid models, the short-range
interactions are given by a simple hard-sphere repulsion, giving the dipolar hard
sphere (DHS) model. In general, though, unless the carrier liquid is refractive-index
matched, some sort of short-range attraction is expected between the particles, and
so the total interaction given by Equation (1) is more appropriate. Of course, the
functional form of the total van der Waals interactions between colloidal particles
is different from that given in Equation (2). Nonetheless such ‘atomic’ models can
provide excellent descriptions of the properties of bulk ferrofluids. For example, the
magnetisation curves and initial susceptibilities of real ferrofluids can be matched
almost identically by those from theory and simulations of such simple models
[7, 8], including the effects of particle dispersity [9, 10].

The most important control parameters of the Stockmayer model are the thermal
energy (kBT ), the LJ energy (ε), and the characteristic dipolar energy (µ2/σ3).
Hence, three important dimensionless quantities are the reduced temperature T ∗,
the reduced dipole moment µ∗, and the dipolar coupling constant λ defined as
follows.

T ∗ =
kBT

ε
(4)

µ∗ =
µ√
εσ3

(5)

λ =
µ2

kBTσ3
=

(µ∗)2

T ∗
(6)

In computer simulations of the Stockmayer model, it was shown that with large
dipole moments – such that the dipolar interactions dominate – chaining of the
particles in a nose-to-tail parallel conformation (→→) suppresses a conventional
vapour-to-liquid phase transition [11–13], or at least leads to deviations from ‘nor-
mal’ corresponding-states relationships between the critical parameters. The dipo-
lar limit (µ∗ →∞) has been a matter of debate for over four decades. On the basis
of a large number of simulation studies of Stockmayer, DHS, and related models
[14–37], the existence of a purely dipole-driven vapour-liquid transition now seems
unlikely, with several studies showing that a small contribution from other inter-
actions (arising from, e.g., higher multipolar interactions, dispersion interactions,
non-spherical particles, non-polar additives, etc.) is required for condensation to
occur [28, 32, 34, 37].

Another important variable is, of course, an applied field H, which gives rise to
an additional energetic contribution of

ψi = −µi ·H (7)

for particle i. The dimensionless field H∗, and a field-dipole interaction energy α

2
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can be defined by

H∗ = H

√
σ3

ε
(8)

α =
µH

kBT
=
µ∗H∗

T ∗
(9)

where H = |H|. The dependence of the vapour-liquid critical parameters of the
Stockmayer fluid in an applied field has been examined using computer simulations
by Stevens and Grest [20], Boda et al. [22], and Kristóf et al. [25]. In general, as
H∗ is increased, the critical temperature increases by up to about 40%, while the
critical concentration remains roughly constant.

From the theoretical standpoint, there are many approaches to the general prob-
lem of how to describe the thermodynamic and structural properties of dipolar flu-
ids in applied fields, including density functional theory [38, 39], integral equations
[39–41], and thermodynamic perturbation theory [42]. The authors have developed
virial expansions, and improvements thereon, that provide explicit expressions for
thermodynamic and structural functions [43, 44] which compare very well with
computer-simulation data. A simple resummation of the virial expansion, based
on a logarithmic form for the free energy, gives a convenient and accurate expres-
sion for the equation of state [44, 45]. Along the way, it has been emphasised that
the basic definitions of the virial coefficients contain additional terms related to the
field; this was anticipated in earlier work by additional terms related to intramolec-
ular degrees of freedom [46, 47]. Explicit expressions for the virial coefficients have
been developed, and compared with the results from Mayer-sampling calculations
[48]. Up until now, the virial and related expansions have only been tested on DHS
models. The aim of the current work is to extend this formalism to systems with
additional, non-dipolar interactions. A logical starting point is therefore to study
the Stockmayer fluid in an applied field. To this end, theory and simulation are
combined to obtain virial coefficients and thermodynamic properties as functions
of T ∗, λ, and α.

This article is organised as follows. Section 2 contains explicit expressions for
the virial coefficients, and a summary of various virial-expansion theories. Com-
putational details are given in Section 3. The results are presented in Section 4,
beginning with a systematic survey of virial coefficients, and then moving on to
comparisons between the equation of state and vapour-liquid critical parameters
from theory and simulation. The conclusions are given in Section 5.

2. Theory

The theory of N Stockmayer particles in a volume V , and in an applied field H,
begins with the regular virial expansion (VE) of the compressibility factor Z given
by

Z =
βP

ρ
= 1 +

∞∑
n=1

Bn+1ρ
n (10)

where β = 1/kBT , P is the pressure, ρ = N/V is the concentration, and Bn are
virial coefficients. The virial coefficients become ever more difficult to calculate as
n increases. The rate of convergence of the virial series can be very slow and/or
the signs of the virial coefficients can alternate, frustrating attempts to improve

3
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the accuracy of the expansion simply by adding extra terms. One approach to this
problem is to introduce a perturbed virial expansion (PVE) of the form

Z = Zref +
∞∑
n=1

∆Bn+1ρ
n (11)

where Zref is the compressibility factor of a reference system, and ∆Bn = Bn−Bref
n

is the difference between the virial coefficients of the system of interest and the
reference system [49–53]. The idea behind this approach is that, if the properties
of a reference system are well known (e.g., hard-sphere fluid, LJ fluid), and the
system of interest is not too different from the reference system, then the expansion
in ρ should make a relatively small contribution, and hopefully converge rapidly.

A related approach is to recast a perturbed virial expansion of the Helmholtz
free energy F in to a logarithmic form [44, 45]. The Helmholtz free energy for a
system of particles in an applied field can be written

βF

N
=
βF ref

N
− ln Ψ +

∞∑
n=1

1

n
∆Bn+1ρ

n (12)

where F ref is the Helmholtz free energy of a reference system, and

Ψ =

∫
dΩe−βψ =

4π sinhα

α
(13)

is the internal partition function of a particle arising from integrating over its
angular coordinates Ω, with ψ given by Equation (7). The so-called logarithmic
free energy (LFE) theory is obtained by rewriting Equation (12) in the form

βF

N
=
βF ref

N
− ln Ψ− ln

(
1 +

∞∑
n=1

1

n
In+1ρ

n

)
. (14)

Matching terms between Equation (12) and a Maclaurin expansion of (14) gives
for the first two coefficients

I2 = −∆B2 (15)

I3 = −∆B3 + ∆B2
2 . (16)

The compressibility factor can then be obtained easily from the Helmholtz free
energy as follows.

Z = ρ
∂

∂ρ

(
βF

N

)
= Zref − I2ρ+ I3ρ

2

1 + I2ρ+ 1
2I3ρ2

(17)

The prefactor of the logarithmic term in Equation (14) can be +1 or −1, but in the
presence of attractive interactions, the net contribution is expected to be negative.
Choosing a factor of −1 means that the argument of the logarithm should remain
positive, and therefore it should not accidentally turn negative at high values of
ρ. The LFE theory has been tested against simulation results for DHSs with and
without an applied field [44, 45]. The LFE theory outperforms the PVE theory
for this system. The reason is that the logarithmic form of the Helmholtz free

4
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energy includes terms of higher order in ρ than the level of truncation inside the
logarithm. Although these higher order terms are given only approximately, it
appears that knowledge of the second and third virial coefficients is sufficient to
get good agreement with simulation data up to quite high concentrations (up to
about 40% volume fraction) and (for ferrofluids) low temperatures λ ≤ 2.

In this work, the reference system is taken to be the LJ fluid, which is itself
described in terms of the hard-sphere (HS) fluid plus a perturbation at the PVE
level [Equation (11)]. Nezbeda and co-workers have found this type of approach to
provide a very accurate description of the LJ fluid [51, 52], and this is confirmed
in Sections 4.2 and 4.3 where it is compared with simulation results. The effective
hard-sphere diameter d is determined using the familiar Barker-Henderson formula
[54, 55] with the repulsive term (ur

ij) in the following partitioning of the LJ potential
[42].

ur
ij =

{
uLJ
ij rij < σ

0 rij ≥ σ
(18)

ua
ij =

{
0 rij < σ
uLJ
ij rij ≥ σ

(19)

The HS compressibility factor (ZHS) is given accurately by the Carnahan-Starling
result [55, 56]. The final expression for the compressibility factor of the reference
LJ fluid is then

Zref = ZHS + (BLJ
2 −BHS

2 )ρ+ (BLJ
3 −BHS

3 )ρ2 (20)

with the HS virial coefficients BHS
2 = 2πd3/3 and BHS

3 = 5π2d6/18.

2.1. Virial coefficients

The correct expressions for the second and third virial coefficients of a system in
an applied field were derived in Reference 44. The second virial coefficient is given
by

B2 = −1

2

∫
dr12〈f12〉 (21)

where

fij = exp (−βuij)− 1 (22)

is the Mayer f -function, and the angular brackets denote a Boltzmann-weighted,
orientational average for each particle. The explicit expression in this case is

〈f12〉 =
1

Ψ2

∫
dΩ1

∫
dΩ2f12e

−β(ψ1+ψ2). (23)

The third virial coefficient is expressed conveniently as a sum of two terms:

B3 = B3a +B3b. (24)

5
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B3a is an orientational average of the familiar, zero-field expression, while B3b is
more complex.

B3a = −1

3

∫
dr12

∫
dr13〈f12f13f23〉 (25)

B3b =

∫
dr12

∫
dr13[〈f12〉〈f13〉 − 〈f12f13〉] (26)

In the absence of an applied field, or in the presence of an infinitely strong field,
〈f12〉〈f13〉 = 〈f12f13〉, and hence B3b = 0. For DHSs in the presence of finite fields,
B3b was found to give a small but significant negative contribution to B3 on the
order of 10% [44]. It is emphasised that these ‘fluctuation’ corrections to the virial
coefficients were first identified by Caracciolo et al. as arising from intramolecular
degrees of freedom [46, 47].

The task now is to develop explicit expressions for B2 and B3 in terms of T ∗,
λ, and α, these representing the strengths of the LJ, dipole-dipole, and dipole-
field interactions, respectively. To begin, the repulsive interaction potential ur

ij is
replaced by the hard-sphere (HS) potential.

uHS
ij =

{
∞ rij < d
0 rij ≥ d

(27)

With this substitution, the Mayer f -function for the LJ potential can now be
approximated by

fLJ
ij ' exp (−βuHS

ij − βua
ij)−1 = fHS

ij +(fHS
ij +1)fa

ij = fHS
ij +(fHS

ij +1)
∞∑
k=1

(−βua
ij)

k

k!
.

(28)
To obtain the Mayer f -function for the Stockmayer fluid, the dipolar interaction
can be added in a similar way as follows.

fij = exp (−βuLJ
ij − βud

ij)− 1 = fLJ
ij + (fLJ

ij + 1)fd
ij = fLJ

ij + (fLJ
ij + 1)

∞∑
l=1

(−βud
ij)

l

l!

(29)
Inserting Equation (28) for (fLJ

ij + 1) in Equation (29) gives an expansion of fij in

terms of βua
ij and βud

ij .

fij = fLJ
ij + (fHS

ij + 1)

∞∑
k=0

∞∑
l=1

(−βua
ij)

k(−βud
ij)

l

k!l!
(30)

The calculations of B2, B3a, and B3b from Equations (21), (25), and (26), respec-
tively, bring in additional dependences on α from the orientational averages. The
calculations are laborious: some of the required integrals have been determined in
earlier work [44], and new results are given in the Appendices.

2.1.1. B2

The non-polar contribution to B2 can be calculated numerically.

BLJ
2 = −1

2

∫
dr12f

LJ
12 (31)

6
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The dipolar contributions arising from the sum in Equation (29) are brought in by
calculating terms up to k+ l = 4 in Equation (30). The individual terms are given
in Appendix A, but the final result is

B2

b
=
BLJ

2

b

− λL2(α)

− λ2[5 + L2
3(α)]

15

[
σ3

d3
+

8

15T ∗
+

64

315(T ∗)2

]
− λ3

105

[
2L(α)L3(α)

α
− 5L2

3(α)

α2
+ 4L2(α)

](
σ6

d6
+

2

3T ∗

)
− λ4

420

σ9

d9

[
116L2(α)

α2
− 44L(α)

α
−
(

395

α3
− 28

α

)
L(α)L3(α)

−
(

105

α2
− 140

α4

)
L2

3(α) +
113L3(α)

α2
+ 8

]
(32)

where b = 2πσ3/3, L(α) = [coth(α)− α−1] is the Langevin function, and Ln(α) =
1− nL(α)/α.

2.1.2. B3

The non-polar contribution to B3 can be calculated numerically, using the LJ
potential directly.

BLJ
2 = −1

3

∫
dr12

∫
dr13f

LJ
12 f

LJ
13 f

LJ
23 (33)

The evaluation of the dipolar contributions to B3 is considerably more complex,
and so the expansions of Equations (25) and (26) are truncated at manageable
levels. B3a and B3b have been determined up to the terms involving (−βud

ij),

(−βud
ij)(−βua

ij), (−βud
ij)

2, and (−βud
ij)

3. Some further comments are made in Ap-
pendix B, but the final result for B3 is

B3

b2
=
BLJ

3

b2

− λ2

8

{(
2 ln 2 +

1

3

)[
1 +

L2
3(α)

5

]
− 2L2(α)

[
16L2(α) +

29L(α)

α
− 10

]}
− λ3

8

{
(292 + 12 ln 2)

L3(α)

5α
+ (288 ln 2− 174)

L3(α)

α3
− 64L2(α)L2

3(α)

15

+

(
112

5
+

48 ln 2

35

)
L2(α)L3(α) + (192 ln 2− 146)

L2(α)L3(α)

α2

+ (48− 96 ln 2)
L2(α)

α2
− 3686L2(α)

175
+

20L(α)L2(α)L3(α)

α

+

(
1884 ln 2

7
− 188

)
L(α)L2

3(α)

α
+

71L(α)L3(α)

525α
+ (48− 96 ln 2)L2

2(α)L3(α)

+ (232− 384 ln 2)
L2(α)L2

3(α)

5
+

(
864 ln 2

5
− 3384

35

)
L3

3(α)− 71L2
3(α)

210α2

}
(34)

7
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With B2 and B3 in hand, it is straightforward to calculate the expansion coefficients
in the LFE expressions – Equations (14) and (17) – using the definitions given by
Equations (15) and (16). Specifying the LJ fluid as the reference system, ∆B2 =
B2−BLJ

2 and ∆B3 = B3−BLJ
3 . The compressibility factor of the Stockmayer fluid

is then given by Equation (17) with Zref given by Equation (20). Once again, it
is emphasised that the reference LJ system is described at the PVE level, starting
from the HS fluid. The dipolar corrections to the LJ fluid are then handled at
the LFE level. Variants of the theory could include the LJ and dipolar corrections
handled at either the PVE or LFE levels, but the choice made here was found to
provide the best agreement with simulation, as will be demonstrated in Sections
4.2 and 4.3.

3. Computer simulations

3.1. Mayer sampling

The second virial coefficient was determined using Mayer sampling [48]. In this
method, two-particle configurations are sampled according to a weight w, chosen to
reflect the configurations that make the most significant contributions to the quan-
tity of interest, in this case B2. The weight was chosen to be w = |f12e

−β(ψ1+ψ2)|
[see Equation (23)]. If B2 is known for a reference system (call it Bref

2 ) then

B2

Bref
2

=
〈f12e

−β(ψ1+ψ2)/w〉w
〈f ref

12 e
−β(ψ1+ψ2)/w〉w

(35)

where 〈. . .〉w denotes an average over the biased distribution of configurations with
weight w. The dipolar interaction introduces a complication, however, because the
long-range contribution to f12, proportional to −βud

12, depends on the shape of the
sample container due to depolarisation fields. In both theory and simulation, it is
most convenient to consider a case where the depolarisation fields vanish, and this
corresponds to a cylindrical container of infinite aspect ratio. With this choice, the
long-range part can be evaluated straightforwardly. Hence, Mayer sampling is used
to evaluate the integral of

∆f12 = f12 + (fLJ
12 + 1)βud

12 (36)

which has no long-range term ∼ βud
12. B2 is then obtained by adding in the result

of integrating the long-range part analytically [44]; note that the long-range part
does not depend on the form of the short-range interaction.

B2 = −1

2

∫
dr12〈∆f12〉 − bλL2(α) (37)

As discussed in detail in Reference 44, B3a (25) can be calculated directly using
Mayer sampling because there are no terms that depend on sample geometry. Un-
fortunately, B3b does contain such contributions: the offending term is the integral
of 〈βud

12∆f13〉, and further expansion of ∆f13 in terms of λ shows that there are
contributions of all orders; therefore, the coefficient in front of this long-range term
cannot be evaluated analytically. The comparison between theory and simulation
will be limited here to B2 and B3a, but in practice B3b is anyway quite small
compared to B3a.

8



June 17, 2015 Molecular Physics paper

For best results, the reference system should be chosen so that there is a reason-
able overlap between the configurations that make major contributions to Bn and
Bref
n . In this work, the reference system was taken as hard spheres, with a diameter

chosen to minimise statistical errors; by trial and error, the optimum hard-sphere
diameter was found to be 1.6σ.

3.2. Molecular dynamics simulations

Canonical (NV T ) molecular dynamics (MD) simulations were carried out using
LAMMPS [57, 58]. N = 512 Stockmayer particles were simulated in a uniform field
with periodic boundary conditions applied. The long-range dipolar interactions
were computed using Ewald summations with conducting boundary conditions,
which removes depolarisation fields [59]. The equations of motion were integrated
using the velocity-Verlet method, with a reduced timestep δt∗ = 0.01. Constant-
temperature conditions were achieved using a Langevin thermostat. A typical run
consisted of 5 × 105 timesteps for equilibration, followed by a production run of
the same length. Averages were calculated from measurements taken at intervals
of 100 timesteps.

4. Results

The virial coefficients, equation of state, and vapour-liquid critical parameters are
considered in turn.1

4.1. Virial coefficients

Figure 1 shows the second virial coefficient B2 in zero applied field (α = 0) as a
function of reduced temperature T ∗ and with fixed reduced dipole moments µ∗ = 0,
1/
√

2, 1, and
√

2. Results are shown from theory and Mayer-sampling calculations.
For a given dipole moment, B2 becomes more negative with decreasing tempera-
ture. Similarly, for a given temperature, increasing the dipole moment leads to a
decrease in B2. These trends are simply due to the contributions from the attrac-
tive interactions becoming more prominent. With µ∗ = 0 the agreement between
theory and Mayer sampling is perfect because the LJ contribution is computed di-
rectly from Equation (31). This good agreement is maintained with increasing µ∗,
with only minor deviations setting in at µ∗ =

√
2 and at temperatures approaching

T ∗ = 1.
Figure 2 shows corresponding results for the third virial coefficient B3 in zero

applied field (α = 0). Also shown in Figure 2(a) are some numerical results taken
from Table II of Reference 4, but these are obscured by the new Mayer-sampling
results. B3 shows a global maximum which increases with increasing µ∗, and shifts
to lower temperature. As before, with α = 0, the agreement between theory and
Mayer sampling is perfect because the LJ contribution is computed directly from
Equation (33). With increasing µ∗, the agreement between theory and Mayer sam-
pling worsens, due to truncation of the λ-expansion at third order in Equation (34).
Nonetheless, the basic shapes of the functions are correct, and the theoretical and
numerical results converge at high temperature, as they should.

1Original data from Mayer-sampling and molecular-dynamics simulations are available from
http://dx.doi.org/10.7488/ds/249
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Figure 1. Second virial coefficient B2 as a function of T ∗ in zero applied field (α = 0): (a) µ∗ = 0; (b)

µ∗ = 1/
√

2; (c) µ∗ = 1; (d) µ∗ =
√

2. The open symbols are from Mayer sampling, and the lines are from
theory.
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Figure 2. Third virial coefficient B3 as a function of T ∗ in zero applied field (α = 0): (a) µ∗ = 0; (b)

µ∗ = 1/
√

2; (c) µ∗ = 1; (d) µ∗ =
√

2. The open symbols are from Mayer sampling, and the lines are
from theory. In (a) there are also results taken from Table II of Reference 4 (filled symbols) but they are
obscured by the new Mayer-sampling results.

It is useful to reconsider the results at fixed λ instead of at fixed µ∗. While the
electric dipole moment of a molecule is basically fixed by chemical bonding, there
are various ways of altering the magnetic dipole moment of a nanoparticle or other
colloidal particle, such as with temperature, chemical composition, particle size,
etc. Therefore, when discussing magnetic particles and ferrofluids, it is more usual
to characterise the strength of the dipolar interactions by reference to the thermal
energy, i.e., by calculating λ. Keeping λ fixed and varying T ∗ is like changing the
strength of the non-magnetic, van der Waals attractions between ferrofluid particles
at fixed T , which could be achieved by varying the refractive-index (mis)match
between the particles and the suspending liquid.

Figures 3 and 4 show, respectively, the second virial coefficient B2 and third
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virial coefficient B3 in zero applied field (α = 0) as functions of temperature T ∗

and with fixed λ = 0, 1/2, 1, and 2. These choices of λ correspond to µ∗ = 0, 1/
√

2,
1, and 2, respectively, at a temperature T ∗ = 1. The results for B2 in Figure 3 show
that there is excellent agreement between theory and Mayer sampling up to λ = 1,
while at λ = 2 there are deviations on the order of 10% at the lowest temperatures.
This is encouraging, because the dipolar coupling constants in real ferrofluids are
rarely higher than 1. Over this temperature range, the additional van der Waals
interactions simply make B2 more negative because the configurations of particles
giving attractive dipolar interactions (i.e., parallel, nose-to-tail configurations) just
become even more dominant in the configurational integral (21).
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Figure 3. Second virial coefficient B2 as a function of T ∗ in zero applied field (α = 0): (a) λ = 0; (b)
λ = 1/2; (c) λ = 1; (d) λ = 2. The open symbols are from Mayer sampling, and the lines are from theory.

Figure 4 shows that the theoretical description of B3 is far less satisfactory.
The agreement between theory and Mayer sampling is worse here than in Figure
2 because the dipolar interaction strength is kept constant with respect to the
thermal energy. Hence, the deviations do not decrease with increasing temperature.
Note that some points from Reference 4 are included in the figure, as a check of
the new Mayer-sampling results with λ = 0.

To complete the discussion of the zero-field case, Figure 5 shows the variations
of B2 and B3 with λ at various fixed temperatures. The behaviour of B2 is unre-
markable, simply decreasing with increasing λ as the attractive dipolar interactions
arising from chain-like configurations increase in significance. Basically, the theory
captures this effect quantitatively up until λ ' 1, and then beyond that value sig-
nificant deviations become apparent. This is a simple consequence of the truncation
of the expansion in Equation (32). The results from Mayer-sampling calculations
show that the dependence of B3 on λ is more complex. It is positive at low values
of λ because there is only a small number of ‘globular’ configurations where each
of the fijs in Equation (25) would be positive; most of the ‘compact’ configura-
tions give less-than-optimum interactions for at least one of the pairs of particles.
Increasing λ first just exacerbates this effect, because the LJ energy dominates
over the dipolar energy. But at large values of λ, the dipolar interaction must
win, and the energetic benefit of the attractive, chain-like structures outweighs the
‘entropic’ penalty of there being relatively few such structures. Hence, B3 shows
a global maximum, and at high values of λ it becomes negative. The theoretical
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Figure 4. Third virial coefficient B3 as a function of T ∗ in zero applied field (α = 0): (a) λ = 0; (b)
λ = 1/2; (c) λ = 1; (d) λ = 2. The open symbols are from Mayer sampling, and the lines are from theory.
In (a) there are also numerical results taken from Table II of Reference 4 (filled symbols).

expression is rather poor in this case, in that it does not reproduce any kind of
global maximum. Moreover, the inset in Figure 5(b) shows that the expansion does
not get the initial behaviour correct in the region 0 ≤ λ ≤ 1. These discrepancies
arise from the truncation of Equation (34). In earlier studies of the DHS fluid in
zero applied field [45] it was found that an expansion of B3 up to terms of order
λ12 was necessary to get reasonable agreement with Mayer-sampling results. This
is completely impractical here, as the field-dependence is also required.

0 1 2 3

λ

-30

-25

-20

-15

-10

-5

0

B
2
 /

 σ
3

(a)

T* = 3.00

T* = 2.00

T* = 1.50

T* = 1.25

T* = 1.00

0 1 2 3

λ

-80

-60

-40

-20

0

20

40

60

B
3
 /

 σ
6

(b)

0.0 0.5 1.0

1

2

3

4

Figure 5. Virial coefficients as functions of λ in zero applied field (α = 0): (a) second virial coefficient B2;
(b) third virial coefficient B3 (with the inset showing data for 0 ≤ λ ≤ 1). The open symbols are from
Mayer sampling, and the lines are from theory.

Finally, the dependences of the virial coefficients on an applied field are consid-
ered. The preceding discussion shows that the theory is not reliable at large values
of λ, so to avoid clouding the issue, only results with λ = 1 are considered. Recall
that this is a typical value for real ferrofluids, and that in this case, the theoretical
expression for B2 is very accurate, while that for B3 is inaccurate. Figure 6(a)
shows B2 as a function of α for λ = 1 and various temperatures T ∗. Large values
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of α are considered so that the approach to the fully aligned case can be explored;
with α = 1000, the Langevin magnetisation L(α) ≈ 1 − α−1 = 0.999. The appli-
cation of a field makes B2 more negative, due to the increasing statistical weight
in Equation (21) of the attractive, chain-like configurations that are aligned with
the field. The agreement between theory and Mayer sampling is excellent at each
of the temperatures considered.
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Figure 6. Virial coefficients as functions of α with λ = 1: (a) second virial coefficient B2; (b) third virial
coefficient B3a. The open symbols are from Mayer sampling, and the solid lines are from theory. In (b),
the dotted line is B3b for the case T ∗ = 1.00.

Figure 6(b) shows B3a at two temperatures, T ∗ = 1.00 and 3.00; results for
other temperatures fall inbetween, but they are omitted for clarity because the
theoretical lines are all similar on that scale. The Mayer-sampling results show
that B3a increases with increasing field strength. This is because there are more
‘globular’ configurations than ‘chain-like’ configurations; in the former case, align-
ing the dipoles with the field is likely to increase the energy, while in the latter
case, the opposite is true. The theory shows the same basic trends, but the quan-
titative agreement is poor for precisely the reasons outlined in the zero-field case.
To isolate the field-dependence, Figure 7 shows the relative variations of the virial
coefficients, defined by

Rn(α) =
Bn(α)−Bn(∞)

Bn(0)−Bn(∞)
(38)

where of course for the third virial coefficient, B3 means B3a. As defined, Rn(0) = 1
and Rn(∞) = 0. The results from theory and Mayer sampling are in excellent
agreement, showing in particular that the origin of the discrepancies in B3a is the
truncation in λ, rather than in the field-dependent terms.

Figure 6(b) also shows an example of B3b as a function of α, for the case T ∗ = 1.00
(µ∗ = 1). Note that B3b = 0 when α = 0 and α = ∞, as should be clear from
Equation (26). The plot just illustrates that B3b is only a minor contribution to
B3, and that B3a accounts for almost all of the variations in B3.

4.2. Equation of state

Figure 8 shows the compressibility factor Z as a function of concentration ρ∗ for
systems with λ = 1, at two temperatures, T ∗ = 2 (µ∗ =

√
2) and T ∗ = 3 (µ∗ =

√
3),
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Figure 7. Relative variations of the virial coefficients (38) as functions of α with λ = 1: (a) relative
variation R2 of the second virial coefficient; (b) relative variation R3 of the third virial coefficient. The
open symbols are from Mayer sampling, and the lines are from theory.

and with field strengths corresponding to α = 0, 5, and ∞. Recall that with this
value of λ, the theoretical expression for B2 is practically exact, while that for B3

is not very reliable (see Figure 6). Nonetheless, λ ∼ 1 in real ferrofluids, and it is
therefore important to test the impact of approximating the virial coefficients on the
predicted thermodynamic properties. Results were obtained from MD simulations
and Equation (17). Figure 8 shows that, even with limited knowledge of B3, the
theory is able to predict basic trends very reliably. Firstly, at each temperature
and for a given concentration, the compressibility factor decreases with increasing
field strength. Referring to Figure 6, this arises because with increasing α, B2

becomes more negative (even more ‘attractive’) and more than compensates for the
accompanying increase in B3. Secondly, for a given field strength and concentration,
the compressibility factor increases with increasing temperature. Referring again
to Figure 6, B2 and B3 increase with increasing temperature as the effects of the
attractive interactions are diminished. Finally, Figure 8(b) and (d) shows that the
theory gives the correct limiting behaviour at low concentrations, since it is based
on a virial expansion, and the theoretical expression for B2 is very accurate. The
theory underestimates the pressure at ρ∗ > 0.05 due to the underestimation of B3,
as shown in Figure 6.

4.3. Critical parameters

Finally, theoretical predictions for the critical parameters are tested against the
available simulation data [20, 22]. The critical point (T ∗c , ρ∗c) is located by solving
the simultaneous equations (∂P/∂V )T = (∂2P/∂V 2)T = 0, with Equation (17)
as input. Consider first the reference LJ fluid. Table 1 shows the available, high-
precision simulation data from References 60 and 61, and the theory with Z =
Zref . The agreement between the simulated and theoretical critical temperatures
is practically perfect, while the theoretical critical density is about 15% lower than
the simulation value. In Reference 52, the PVE approach including ∆B2 and ∆B3

(with a slightly different choice of effective hard-sphere diameter) gave T ∗c = 1.28
and ρ∗c = 0.252.

The available simulation data at different values of µ∗ > 0 and H∗ are collected
in Table 1, and in each case, the LFE prediction is given for comparison. The theory
indicates that the critical density decreases with increasing µ∗ and H∗, while the
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Figure 8. Compressibility factor Z = βP/ρ as a function of concentration ρ∗ with λ = 1: (a) and (b)

T ∗ = 2 (µ∗ =
√

2); (c) and (d) T ∗ = 3 (µ∗ =
√

3). The points are from MD simulations, and the lines are
from the LFE theory, Equation (17).

simulation data suggest that it is almost independent of the conditions. It is difficult
to draw any strong conclusions here, because the critical density is notoriously
difficult to pin down precisely using molecular simulations. The variations of the
critical temperature with changing µ∗ and H∗ are more robust, and to make a
more visual comparison, Figure 9 shows a plot of T ∗c from simulation against that
from theory. The theory is very accurate with µ∗ = 0 and µ∗ = 1, but deviations
become apparent with larger values of µ∗. Of course, this arises primarily from the
generally poor description of B3 for µ∗ ≥

√
2, as shown in Figure 2.

The accuracy of the LFE theory in predicting the critical parameters with low
values of µ∗, and the equations of state at moderately supercritical temperatures,
show that it is basically correct. The expressions for the virial coefficients are rea-
sonably good over broad ranges of temperature, provided that the dipole moment
is not too high. These observations suggest that the LFE theory presented here
should be successful in predicting the vapour-liquid coexistence properties just be-
low Tc. At much lower temperatures, though, the expressions for B2 and B3 in
terms of λ will become unreliable, and then significant errors are likely to result.
That is not to say that the LFE theory itself should become less accurate at low
temperatures, and indeed it would be interesting to test the theory systematically
in terms of the phase diagrams predicted for some model systems.

5. Conclusions

In this work, the virial coefficients and thermodynamics of the Stockmayer fluid in
an applied field have been determined from theory and by computation. The two
essential ingredients of the theory are explicit expressions for the first few virial
coefficients, and the logarithmic free energy approach which captures some of the
effects of higher virial coefficients in the sense of an approximate resummation.

Analytical expressions for the virial coefficients have been tested critically against
the results from Mayer-sampling calculations. The comparison shows that the ex-
pression for the second virial coefficient is highly accurate over realistic ranges of

15



June 17, 2015 Molecular Physics paper

Table 1. Critical parameters for the Stockmayer fluid in an applied field from simulation [20, 22, 60, 61] and the

LFE theory.

µ∗ H∗ T ∗c ρ∗c Reference T ∗c (theory) ρ∗c (theory)

0 0.0 1.3120(7) 0.316(1) [60] 1.3118 0.2679
0 0.0 1.3145(2) 0.316(1) [61] 1.3118 0.2679
1 0.0 1.41(1) 0.30(1) [20] 1.4730 0.2747
1 1.0 1.44(1) 0.32(1) [20] 1.4887 0.2746
1 2.0 1.49(1) 0.33(1) [20] 1.5196 0.2735
1 3.0 1.51(1) 0.32(1) [20] 1.5469 0.2712
1 0.0 1.4091(41) 0.3122(9) [22] 1.4730 0.2747
1 1.0 1.4273(87) 0.3127(18) [22] 1.4887 0.2746
1 1.5 1.4428(84) 0.3151(19) [22] 1.5039 0.2742
1 2.0 1.462(11) 0.3113(25) [22] 1.5196 0.2735√

2 0.0 1.6044(54) 0.3115(14) [22] 1.7881 0.2730√
2 0.4 1.6097(59) 0.3091(17) [22] 1.7945 0.2728√
2 0.8 1.6436(64) 0.3084(18) [22] 1.8112 0.2723√
2 1.2 1.6786(81) 0.3082(17) [22] 1.8332 0.2713

2.5 0.0 2.63(1) 0.29(1) [20] 3.2892 0.2267
2.5 0.5 2.71(1) 0.285(1) [20] 3.3075 0.2262
2.5 1.0 2.78(1) 0.285(1) [20] 3.3541 0.2249
2.5 2.0 2.89(1) 0.302(1) [20] 3.4694 0.2208
2.5 5.0 3.15(1) 0.278(1) [20] 3.6760 0.2098
2.5 ∞ 3.64(1) 0.303(1) [20] 4.0400 0.1952

temperature and dipole moment, and over the entire range of applied field strengths
(from zero to infinity). An accurate expression for the third virial coefficient is more
challenging to obtain, being hampered by truncation of the expansion in terms of
the dipolar coupling constant. Nonetheless, the relative changes in both the second
and third virial coefficient over the full range of field strengths have been obtained
essentially exactly. It is therefore clear that to improve the expressions further, one
need concentrate on the expansion with respect to the dipolar coupling constant.

There seems little prospect of determining accurate analytical expressions for the
higher virial coefficients in the presence of a field, but the logarithmic free energy
theory mitigates the usual problems arising from truncating the virial expansion
– or at least, correcting only the first two virial coefficients of a reference system
to include additional interactions. This has been demonstrated by computing the
equation of state and critical parameters, and comparing them against new and
existing simulation data. The results are encouraging, with the theory capturing
faithfully the dependences of the thermodynamic properties on dipole moment
and applied field strength, despite knowledge of the third virial coefficient being
somewhat limited. In general, the accuracy of the LFE approach should depend
on the magnitudes and signs of the cumulant coefficients In, and hence on the
precise numerical values of the virial coefficients Bn. This work, in combination
with earlier studies [44, 45], shows that it works very well for dipolar interactions
of realistic strengths (coupling constant λ ∼ 1) and all values of the applied field
strength.

16



June 17, 2015 Molecular Physics paper

1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
T

c
* (simulation)

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

T
c
*
 (

th
eo

ry
)

µ∗ = 0
µ∗ = 1

µ∗ = √2
µ∗ = 2.5

Figure 9. The critical temperatures from simulation [20, 22, 60, 61] and LFE theory plotted against each
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diamonds), and µ∗ = 2.5 (blue triangles). In each group, the critical temperature increases with increasing
field strength H∗, as given in Table 1.
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Appendix A. Integrals appearing in B2

Inserting Equation (30) in to Equation (21) with terms up to k + l = 4 gives the
following terms.
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A.1. k = 0, l = 1, 2, 3

1

l!

∫
dr12(fHS

12 + 1)〈(−βud
12)l〉 (A1)

These integrals are evaluated in the Supplemental Material of Reference 44.

A.2. k = 0, l = 4

1

24

∫
dr12(fHS

12 + 1)〈(−βud
12)4〉

=
πλ4σ12

315d9

[
116L2(α)

α2
− 44L(α)

α
−
(

395

α3
− 28

α

)
L3(α)L(α)−

(
105

α2
− 140

α4

)
L2

3(α)

+
113L3(α)

α2
+ 8

]
(A2)

A.3. k = 1, 2, 3, l = 1

1

k!

∫
dr12(fHS

12 + 1)(−βua
12)k〈−βud

12〉 = 0 (A3)

A.4. k = 1, l = 2

1

2

∫
dr12(fHS

12 + 1)(−βua
12)〈(−βud

12)2〉 =
32πλ2σ3

675T ∗
[
5 + L2

3(α)
]

(A4)

A.5. k = 2, l = 2

1

4

∫
dr12(fHS

12 + 1)(−βua
12)2〈(−βud

12)2〉 =
256πλ2σ3

14175(T ∗)2

[
5 + L2

3(α)
]

(A5)

A.6. k = 1, l = 3

1

6

∫
dr12(fHS

12 + 1)(−βua
12)〈(−βud

12)3〉

=
8πλ3σ3

945T ∗

[
2L(α)L3(α)

α
− 5L2

3(α)

α2
+ 4L2(α)

]
(A6)

Appendix B. Integrals appearing in B3a and B3b

Inserting Equation (30) in to Equations (25) and (26), and retaining only those
terms up to λ3 and 1/T ∗, leads to considerable simplifications. Firstly, the expres-
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sion for B3a becomes

B3a = BLJ
3

−1

3

∫
dr12

∫
dr13

{
3(fHS

12 + 1)fHS
13 f

HS
23

[
〈−βud

12〉+
1

2
〈(−βud

12)2〉+
1

6
〈(−βud

12)3〉

+(−βua
12)〈−βud

12〉
]

+3(fHS
12 + 1)(fHS

13 + 1)fHS
23

[
2(−βua

13)〈−βud
12〉+ 〈(−βud

12)(−βud
13)〉

+〈(−βud
12)2(−βud

13)〉
]

+(fHS
12 + 1)(fHS

13 + 1)(fHS
23 + 1)〈(−βud

12)(−βud
13)(−βud

23)〉
}
. (B1)

These types of integrals were considered in Reference 44. The terms proportional
to (−βua

12)〈−βud
12〉 and (−βua

13)〈−βud
12〉 disappear after the orientational and po-

sitional integrations. The remaining integrals do not depend on ua
ij , and are given

in the Supplemental Material of Reference 44. At the same level of approximation,
the expression for B3b reads

B3b

=

∫
dr12

∫
dr13(fHS

12 + 1)(fHS
13 + 1)

[
〈−βud

12〉〈−βud
13〉 − 〈(−βud

12)(−βud
13)〉

]
+

∫
dr12

∫
dr13(fHS

12 + 1)(fHS
13 + 1)

[
〈(−βud

12)2〉〈−βud
13〉 − 〈(−βud

12)2(−βud
13)〉

]
(B2)

and there are no terms that depend on ua
ij . Hence, the integrals are identical to

those presented in the Supplemental Material of Reference 44.
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