160 research outputs found

    Search for NN-decoupled dibaryons using the process ppγγXpp \to \gamma \gamma X below the pion production threshold

    Full text link
    The energy spectrum for high energy γ\gamma-rays (Eγ10E_\gamma \geq 10 MeV) from the process ppγγXpp \to \gamma \gamma X emitted at 90090^0 in the laboratory frame has been measured at an energy below the pion production threshold, namely, at 216 MeV. The resulting photon energy spectrum extracted from γγ\gamma-\gamma coincidence events consists of a narrow peak at a photon energy of about 24 MeV and a relatively broad peak in the energy range of (50 - 70) MeV. The statistical significances for the narrow and broad peaks are 5.3σ\sigma and 3.5σ\sigma, respectively. This behavior of the photon energy spectrum is interpreted as a signature of the exotic dibaryon resonance d1d^\star_1 with a mass of about 1956 MeV which is assumed to be formed in the radiative process ppγd1pp \to \gamma d^\star_1 followed by its electromagnetic decay via the d1ppγd^\star_1 \to pp \gamma mode. The experimental spectrum is compared with those obtained by means of Monte Carlo simulations.Comment: 14 pages, LaTex, 6 eps-figures, accepted for publication in Phys.Rev.

    Membranes for Topological M-Theory

    Full text link
    We formulate a theory of topological membranes on manifolds with G_2 holonomy. The BRST charges of the theories are the superspace Killing vectors (the generators of global supersymmetry) on the background with reduced holonomy G_2. In the absence of spinning formulations of supermembranes, the starting point is an N=2 target space supersymmetric membrane in seven euclidean dimensions. The reduction of the holonomy group implies a twisting of the rotations in the tangent bundle of the branes with ``R-symmetry'' rotations in the normal bundle, in contrast to the ordinary spinning formulation of topological strings, where twisting is performed with internal U(1) currents of the N=(2,2) superconformal algebra. The double dimensional reduction on a circle of the topological membrane gives the strings of the topological A-model (a by-product of this reduction is a Green-Schwarz formulation of topological strings). We conclude that the action is BRST-exact modulo topological terms and fermionic equations of motion. We discuss the role of topological membranes in topological M-theory and the relation of our work to recent work by Hitchin and by Dijkgraaf et al.Comment: 22 pp, plain tex. v2: refs. adde

    Induced differential forms on manifolds of functions

    Get PDF
    Differential forms on the Fr\'echet manifold F(S,M) of smooth functions on a compact k-dimensional manifold S can be obtained in a natural way from pairs of differential forms on M and S by the hat pairing. Special cases are the transgression map associating (p-k)-forms on F(S,M) to p-forms on M (hat pairing with a constant function) and the bar map associating p-forms on F(S,M) to p-forms on M (hat pairing with a volume form). We develop a hat calculus similar to the tilda calculus for non-linear Grassmannians.Comment: 17 page

    Computing Amplitudes in topological M-theory

    Get PDF
    We define a topological quantum membrane theory on a seven dimensional manifold of G2G_2 holonomy. We describe in detail the path integral evaluation for membrane geometries given by circle bundles over Riemann surfaces. We show that when the target space is CY3×S1CY_3\times S^1 quantum amplitudes of non-local observables of membranes wrapping the circle reduce to the A-model amplitudes. In particular for genus zero we show that our model computes the Gopakumar-Vafa invariants. Moreover, for membranes wrapping calibrated homology spheres in the CY3CY_3, we find that the amplitudes of our model are related to Joyce invariants.Comment: 26 page

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Overview of the JET results in support to ITER

    Get PDF
    corecore