165 research outputs found

    Nutrition and genetics in NAFLD : The perfect binomium

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) represents a global healthcare burden since it is epidemiologically related to obesity, type 2 diabetes (T2D) and Metabolic Syndrome (MetS). It embraces a wide spectrum of hepatic injuries, which include simple steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The susceptibility to develop NAFLD is highly variable and it is influenced by several cues including environmental (i.e., dietary habits and physical activity) and inherited (i.e., genetic/epigenetic) risk factors. Nonetheless, even intestinal microbiota and its by-products play a crucial role in NAFLD pathophysiology. The interaction of dietary exposure with the genome is referred to as \u2018nutritional genomics,\u2019 which encompasses both \u2018nutrigenetics\u2019 and \u2018nutriepigenomics.\u2019 It is focused on revealing the biological mechanisms that entail both the acute and persistent genome-nutrient interactions that influence health and it may represent a promising field of study to improve both clinical and health nutrition practices. Thus, the premise of this review is to discuss the relevance of personalized nutritional advices as a novel therapeutic approach in NAFLD tailored management

    Monitoring of adherence to headache treatments by means of hair analysis

    Get PDF
    The aim of this study was to evaluate the potential of hair analysis to monitor medication adherence in headache patients undergoing chronic therapy. For this purpose, the following parameters were analyzed: the detection rate of 23 therapeutic drugs in headache patients' hair, the degree of agreement between the self-reported drug and the drug found in hair, and whether the levels found in hair reflected the drug intake reported by the patients

    Hair analysis for detection of triptans occasionally used or overused by migraine patients-a pilot study

    Get PDF
    Purpose The aim of this study is to evaluate the detection rate of almotriptan, eletriptan, frovatriptan, sumatriptan, rizatriptan, and zolmitriptan in the hair of migraineurs taking these drugs; the degree of agreement between type of self-reported triptan and triptan found in hair; if the concentrations in hair were related to the reported cumulative doses of triptans; and whether hair analysis was able to distinguish occasional use from the overuse of these drugs. Methods Out of 300 headache patients consecutively enrolled, we included 147 migraine patients who reported to have taken at least one dose of one triptan in the previous 3 months; 51 % of the patients overused triptans. A detailed pharmacological history and a sample of hair were collected for each patient. Hair samples were analyzed by liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) by a method that we developed. Results All the triptans could be detected in the hair of the patients. The agreement between type of self-reported triptan and type of triptan found in hair was from fair to good for frovatriptan and zolmitriptan and excellent for almotriptan, eletriptan, sumatriptan, and rizatriptan (P < 0.01, Cohen’s kappa). The correlation between the reported quantities of triptan and hair concentrations was statistically significant for almotriptan, eletriptan, rizatriptan, and sumatriptan (P < 0.01, Spearman’ s rank correlation coefficient). The accuracy of hair analysis in distinguishing occasionally users from overusers was high for almotriptan (ROC AUC = 0.9092), eletriptan (ROC AUC = 0.8721), rizatriptan (ROC AUC = 0.9724), and sumatriptan (ROC AUC = 0.9583). Conclusions Hair analysis can be a valuable system to discriminate occasional use from triptan overuse

    VCAM-1 expression on dystrophic muscle vessels has a critical role in the recruitment of human blood-derived CD133+ stem cells after intra-arterial transplantation.

    Get PDF
    Recently our group demonstrated the myogenic capacity of human CD133(+) cells isolated from peripheral blood when delivered in vivo through the arterial circulation into the muscle of dystrophic scid/mdx mice. CD133(+) stem cells express the adhesion molecules CD44, LFA-1, PSGL-1, alpha4-integrins, L-selectin, and chemokine receptor CCR7. Moreover these cells adhere in vitro to VCAM-1 spontaneously and after stimulation with CCL19. Importantly, after muscle exercise, we found that the expression of VCAM-1 is strongly up-regulated in dystrophic muscle vessels, whereas the number of rolling and firmly adhered CD133(+) stem cells significantly increased. Moreover, human dystrophin expression was significantly increased when muscle exercise was performed 24 hours before the intra-arterial injection of human CD133(+) cells. Finally, treatment of exercised dystrophic mice with anti-VCAM-1 antibodies led to a dramatic blockade of CD133(+) stem cell migration into the dystrophic muscle. Our results show for the first time that the expression of VCAM-1 on dystrophic muscle vessels induced by exercise controls muscle homing of human CD133(+) stem cells, opening new perspectives for a potential therapy of muscular dystrophy based on the intra-arterial delivery of CD133(+) stem cells

    Characterization of a fluvial aquifer at a range of depths and scales: the Triassic St Bees Sandstone Formation, Cumbria, UK

    No full text
    Fluvial sedimentary successions represent porous media that host groundwater and geothermal resources. Additionally, they overlie crystalline rocks hosting nuclear waste repositories in rift settings. The permeability characteristics of an arenaceous fluvial succession, the Triassic St Bees Sandstone Formation in England (UK), are described, from core-plug to well-test scale up to ~1 km depth. Within such lithified successions, dissolution associated with the circulation of meteoric water results in increased permeability (K~10−1–100 m/day) to depths of at least 150 m below ground level (BGL) in aquifer systems that are subject to rapid groundwater circulation. Thus, contaminant transport is likely to occur at relatively high rates. In a deeper investigation (> 150 m depth), where the aquifer has not been subjected to rapid groundwater circulation, well-test-scale hydraulic conductivity is lower, decreasing from K~10−2 m/day at 150–400 m BGL to 10−3 m/day down-dip at ~1 km BGL, where the pore fluid is hypersaline. Here, pore-scale permeability becomes progressively dominant with increasing lithostatic load. Notably, this work investigates a sandstone aquifer of fluvial origin at investigation depths consistent with highly enthalpy geothermal reservoirs (~0.7–1.1 km). At such depths, intergranular flow dominates in unfaulted areas with only minor contribution by bedding plane fractures. However, extensional faults represent preferential flow pathways, due to presence of high connective open fractures. Therefore, such faults may (1) drive nuclear waste contaminants towards the highly permeable shallow (< 150 m BGL) zone of the aquifer, and (2) influence fluid recovery in geothermal fields

    Morphological, physiological and behavioural evaluation of a ‘Mice in Space’ housing system

    Get PDF
    Environmental conditions likely affect physiology and behaviour of mice used for life sciences research on Earth or in Space. Here, we analysed the effects of cage confinement on the weightbearing musculoskeletal system, behaviour and stress of wild-type mice (C57BL/6JRj, 30 g b.wt., total n = 24) housed for 25 days in a prototypical ground-based and fully automated life support habitat device called “Mice in Space” (MIS). Compared with control housing (individually ventilated cages) the MIS mice revealed no significant changes in soleus muscle size and myofiber distribution (type I vs. II) and quality of bone (3-D microarchitecture and mineralisation of calvaria, spine and femur) determined by confocal and micro-computed tomography. Corticosterone metabolism measured non-invasively (faeces) monitored elevated adrenocortical activity at only start of the MIS cage confinement (day 1). Behavioural tests (i.e., grip strength, rotarod, L/D box, elevated plus-maze, open field, aggressiveness) performed subsequently revealed only minor changes in motor performance (MIS vs. controls). The MIS habitat will not, on its own, produce major effects that could confound interpretation of data induced by microgravity exposure during spaceflight. Our results may be even more helpful in developing multidisciplinary protocols with adequate scenarios addressing molecular to systems levels using mice of various genetic phenotypes in many laboratories
    corecore