21 research outputs found

    Ibuprofen Ameliorates Fatigue- And Depressive-Like Behavior in Tumor-Bearing Mice

    Get PDF
    Aims: Cancer-related fatigue (CRF) is often accompanied by depressed mood, both of which reduce functional status and quality of life. Research suggests that increased expression of pro-inflammatory cytokines is associated with skeletal muscle wasting and depressive- and fatigue-like behaviors in rodents and cancer patients. We have previously shown that treatment with ibuprofen, a nonsteroidal anti-inflammatory drug, preserved muscle mass in tumor-bearing mice. Therefore, the purpose of the present study was to determine the behavioral effects of ibuprofen in a mouse model of CRF. Main methods: Mice were injected with colon-26 adenocarcinoma cells and treated with ibuprofen (10 mg/kg) in the drinking water. Depressive-like behavior was determined using the forced swim test (FST). Fatigue-like behaviors were determined using voluntary wheel running activity (VWRA) and grip strength. The hippocampus, gastrocnemius muscle, and serum were collected for cytokine analysis. Key findings: Tumor-bearing mice showed depressive-like behavior in the FST, which was not observed in mice treated with ibuprofen. VWRA and grip strength declined in tumor-bearing mice, and ibuprofen attenuated this decline. Tumor-bearing mice had decreased gastrocnemius muscle mass and increased expression of IL-6, MAFBx and MuRF mRNA, biomarkers of protein degradation, in the muscle. Expression of IL-1β and IL-6 was also increased in the hippocampus. Treatment with ibuprofen improved muscle mass and reduced cytokine expression in both the muscle and hippocampus of tumor-bearing mice. Significance: Ibuprofen treatment reduced skeletal muscle wasting, inflammation in the brain, and fatigue- and depressive-like behavior in tumor-bearing mice. Therefore, ibuprofen warrants evaluation as an adjuvant treatment for CRF

    Fluoxetine Prevents the Development of Depressive-like Behavior in a Mouse Model of Cancer Related Fatigue

    Get PDF
    Cancer patients frequently suffer from fatigue, a complex syndrome associated with tiredness and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, escalates during treatment, and can persist for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. We have previously shown that increased pro-inflammatory cytokine expression in the brain contributes to depressive- and fatigue-like behaviors in a mouse model of CRF. Inflammatory cytokines increase the activity of indoleamine 2,3-dioxygenase (IDO) and kynurenine 3-monooxygenase (KMO), which competitively reduce serotonin synthesis. Reduced serotonin availability in the brain and increased production of alternative neuroactive metabolites of tryptophan are thought to contribute to the development of depression and fatigue. The purpose of this study was to determine the effects of fluoxetine, a selective serotonin reuptake inhibitor (SSRI), on brain cytokines and behavioral measures of fatigue and depression in tumor-bearing mice. Here we show that tumor growth increased brain expression of pro-inflammatory cytokines and KMO. Treatment with fluoxetine had no effect on tumor growth, muscle wasting, fatigue behavior, or cytokine expression in the brain. Fluoxetine, however, reduced depressive-like behaviors in tumor bearing mice. In conclusion, our data confirm that increased brain expression of pro-inflammatory cytokines is associated with tumor-induced fatigue- and depressive-like behaviors. However, it is possible to separate the effects of tumor growth on mood and fatigue-like behaviors using SSRIs such as fluoxetine

    Tumor Growth Increases Neuroinflammation, Fatigue and Depressive-like Behavior Prior to Alterations in Muscle Function

    Get PDF
    Cancer patients frequently suffer from fatigue, a complex syndrome associated with loss of muscle mass, weakness, and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, during treatment, and persists for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. Currently there are no effective treatments to reduce CRF. The aim of this study was to use a mouse model of tumor growth and discriminate between two main components of fatigue: loss of muscle mass/function and altered mood/motivation. Here we show that tumor growth increased fatigue- and depressive-like behaviors, and reduced body and muscle mass. Decreased voluntary wheel running activity (VWRA) and increased depressive-like behavior in the forced swim and sucrose preference tests were evident in tumor-bearing mice within the first two weeks of tumor growth and preceded the loss of body and muscle mass. At three weeks, tumor-bearing mice had reduced grip strength but this was not associated with altered expression of myosin isoforms or impaired contractile properties of muscles. These increases in fatigue and depressive-like behaviors were paralleled by increased expression of IL-1β mRNA in the cortex and hippocampus. Minocycline administration reduced tumor-induced expression of IL-1β in the brain, reduced depressive-like behavior, and improved grip strength without altering muscle mass. Taken together, these results indicate that neuroinflammation and depressed mood, rather than muscle wasting, contribute to decreased voluntary activity and precede major changes in muscle contractile properties with tumor growth

    Central activation of alpha7 nicotinic signaling attenuates lps-induced neuroinflammation and sickness behavior in adult but not in aged animals

    Full text link
    We previously reported that lipopolysaccharide (LPS) challenge caused microglial-mediated neuroinflammation and sickness behavior that was amplified in aged mice. As α7 nAChRs are im-plicated in the “Cholinergic anti-inflammatory pathway”, we aimed to determine how α7 nAChR stimulation modulates microglial phenotype in an LPS-induced neuroinflammation model in adult and aged mice. For this, BALB/c mice were injected intraperitoneally with LPS (0.33 mg/kg) and treated with the α7 nAChR agonist PNU282987, using different administration protocols. LPS challenge reduced body weight and induced lethargy and social withdrawal in adult mice. Peripheral (intraperitoneal) co-administration of the α7 nAChR agonist PNU282987 with LPS, attenuated body weight loss and sickness behavior associated with LPS challenge in adult mice, and reduced microglial activation with suppression of IL-1β and TNFα mRNA levels. Furthermore, central (intracerebroven-tricular) administration of the α7 nAChR agonist, even 2 h after LPS injection, attenuated the decrease in social exploratory behavior and microglial activation induced by peripheral administration of LPS, although this recovery was not achieved if activation of α7 nAChRs was performed peripherally. Finally, we observed that the positive results of central activation of α7 nAChRs were lost in aged mice. In conclusion, we provide evidence that stimulation of α7 nAChR signaling reduces microglial activation in an in vivo LPS-based model, but this cholinergic-dependent regulation seems to be dysfunctional in microglia of aged mice.This work was supported by the Spanish Ministry of Science, innovation and Universities Ref. SAF2015-63935-R and Ref. RTI2018-095793-B-I00 and General Council for Research and Innovation of the Community of Madrid and European Structural Funds Ref. B2017/BMD–3827–NRF24ADCM to M.G.L. Aging studies were supported by an NIA grant (R01-AG-033028) to J.P.G

    Impaired CD8 T cell antiviral immunity following acute spinal cord injury

    No full text
    Abstract Background Spinal cord injury (SCI) disrupts essential neuroimmune communication, leading to severe immune depression. Previous studies confirmed immune dysfunction in mice with chronic SCI and following high thoracic level injury where sympathetic innervation of the spleen is disrupted. Here, we induced a mid-thoracic injury where integrity of the sympathetic response is maintained and investigated the antiviral T cell response to influenza virus after acute SCI. Methods One week following a contusion SCI at thoracic level T9, mice were infected intranasally with influenza virus. Profiles of immune cell populations were analyzed before infection, and virus-specific CD8 T cell response was analyzed 7 days post-infection. Results Following intranasal infection, injured mice had prolonged recovery and significant weight loss. Importantly, expansion and effector functions of virus-specific CD8 T cells were decreased in injured mice. The compromised CD8 T cell response was associated with inflammation and stress responses initiated after injury. Regulatory mechanisms, including increased regulatory T cells (Tregs) and upregulated PD-1/PD-L1, were induced following SCI. Furthermore, we show that increased corticosterone (CORT) levels can inhibit CD8 T cells and that blocking CORT in vivo following SCI enhances CD8 T cell antiviral responses. Conclusions Our results show that mice with mid-thoracic SCI have impaired CD8 T cell function during the acute stage of injury, indicating that impaired antiviral responses occur rapidly following SCI and is not dependent on injury level

    Storage conditions and passages alter IL-6 secretion in C26 adenocarcinoma cell lines

    Get PDF
    The C26 adenocarcinoma tumor line is frequently used to establish peripheral tumors in mice for the study of cancer cachexia and cancer-related fatigue. Recently, we have noticed a progressive decline in the effects of tumor growth on our biological and behavioral measures in the tumor-bearing mice. Therefore, we compared effects of three aliquots of the C26 tumor cell line that differed in storage condition and number of passages on cytokine secretion, tumor growth, weight loss and fatigue behavior. Three aliquots of the C26 tumor line were selected as alpha (α), beta (β), and gamma (γ). Aliquot α was an original C26 stock line that had been stored at −80 °C. Aliquot β was stored in liquid nitrogen. Aliquot γ was taken from aliquot β and passaged three times. The three aliquots of the C26 tumor line showed differences in IL-6 mRNA and protein secretion in vitro, with aliquot β showing the greatest IL-6 secretion. These differences were mirrored in vivo. Plasma IL-6 levels were elevated in all tumor bearing mice but was greatest in group β mice. Carcass weight was decreased in all three tumor groups. Brain expression of IL-1β mRNA was greatest in group β and group β demonstrated the greatest decline in running activity at day 19. • Storage conditions and number of passages influence C26 tumor cell secretion of cytokines. • Variations in C26 aliquots may explain differences observed between laboratories using the same cell line. • We recommend always storing cell lines in liquid nitrogen and limiting the number of passages before use in experiments
    corecore