215 research outputs found
Transport policy and health inequalities: a health impact assessment of Edinburgh's transport policy
Health impact assessment (HIA) can be used to examine the relationships between inequalities and health. This HIA of Edinburgh's transport policy demonstrates how HIA can examine how different transport policies can affect different population groupings to varying degrees.
In this case, Edinburgh's economy is based on tourism, financial services and Government bodies. These need a good transport infrastructure, which maintains a vibrant city centre. A transport policy that promotes walking, cycling and public transport supports this and is also good for health.
The HIA suggested that greater spend on public transport and supporting sustainable modes of transport was beneficial to health, and offered scope to reduce inequalities. This message was understood by the City Council and influenced the development of the city's transport and land-use strategies. The paper discusses how HIA can influence public policy
Before and After: Comparison of Legacy and Harmonized TCGA Genomic Data Commonsâ Data
We present a systematic analysis of the effects of synchronizing a large-scale, deeply characterized, multi-omic dataset to the current human reference genome, using updated software, pipelines, and annotations. For each of 5 molecular data platforms in The Cancer Genome Atlas (TCGA)âmRNA and miRNA expression, single nucleotide variants, DNA methylation and copy number alterationsâcomprehensive sample, gene, and probe-level studies were performed, towards quantifying the degree of similarity between the âlegacyâ GRCh37 (hg19) TCGA data and its GRCh38 (hg38) version as âharmonizedâ by the Genomic Data Commons. We offer gene lists to elucidate differences that remained after controlling for confounders, and strategies to mitigate their impact on biological interpretation. Our results demonstrate that the hg19 and hg38 TCGA datasets are very highly concordant, promote informed use of either legacy or harmonized omics data, and provide a rubric that encourages similar comparisons as new data emerge and reference data evolve. Gao et al. performed a systematic analysis of the effects of synchronizing the large-scale, widely used, multi-omic dataset of The Cancer Genome Atlas to the current human reference genome. For each of the five molecular data platforms assessed, they demonstrated a very high concordance between the âlegacyâ GRCh37 (hg19) TCGA data and its GRCh38 (hg38) version as âharmonizedâ by the Genomic Data Commons
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Capabilities for Uniqueness and Borrowing
An important application of unique object references is safe and efficient message passing in concurrent object-oriented programming. However, to prevent the ill effects of aliasing, practical systems often severely restrict the shape of messages passed by reference. Moreover, the problematic interplay between destructive reads--often used to implement unique references--and temporary aliasing through "borrowed" references is exacerbated in a concurrent setting, increasing the potential for unpredictable run-time errors. This paper introduces a new approach to uniqueness. The idea is to use capabilities for enforcing both at-most-once consumption of unique references, and a flexible notion of uniqueness. The main novelty of our approach is a model of uniqueness and borrowing based on simple, unstructured capabilities. The advantages are: first, it provides simple foundations for uniqueness and borrowing. Second, it can be formalized using a relatively simple type system, for which we provide a complete soundness proof. Third, it avoids common problems involving borrowing and destructive reads, since unique references subsume borrowed references. We have implemented our type system as an extension to Scala. Practical experience suggests that our system allows type checking real-world actor-based concurrent programs with only a small number of additional type annotations
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.
Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
Integrated Molecular Characterization of Testicular Germ Cell Tumors
We studied 137 primary testicular germ cell tumors (TGCTs) using high-dimensional assays of genomic, epigenomic, transcriptomic, and proteomic features. These tumors exhibited high aneuploidy and a paucity of somatic mutations. Somatic mutation of only three genes achieved significanceâKIT, KRAS, and NRASâexclusively in samples with seminoma components. Integrated analyses identified distinct molecular patterns that characterized the major recognized histologic subtypes of TGCT: seminoma, embryonal carcinoma, yolk sac tumor, and teratoma. Striking differences in global DNA methylation and microRNA expression between histology subtypes highlight a likely role of epigenomic processes in determining histologic fates in TGCTs. We also identified a subset of pure seminomas defined by KIT mutations, increased immune infiltration, globally demethylated DNA, and decreased KRAS copy number. We report potential biomarkers for risk stratification, such as miRNA specifically expressed in teratoma, and others with molecular diagnostic potential, such as CpH (CpA/CpC/CpT) methylation identifying embryonal carcinomas. Shen et al. identify molecular characteristics that classify testicular germ cell tumor types, including a separate subset of seminomas defined by KIT mutations. This provides a set of candidate biomarkers for risk stratification and potential therapeutic targeting
Career Development in Schizophrenia: A Heuristic Framework
Adults with schizophrenia continue to have poor rates of competitive employment. We have learned how to support individuals in the workplace with supported employment (SE); but have paid limited attention to early vocational identity development, work antecedents, illness characteristics, and career preferences. Vocational identity development is an important and natural condition of human growth for all persons and is well-researched in career counseling. For young adults with schizophrenia, the predictor of positive work outcome with the most evidence has been that working competitively prior to illness leads to better chances for work post-diagnosis. A heuristic framework is proposed to conceptualize how pre-illness vocational development (paid and unpaid) plus life cycle supports can provide direction to the individual in their work recovery.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44318/1/10597_2005_Article_5004.pd
- âŚ