2,409 research outputs found
Directionally solidified iron-base eutectic alloys
Pseudobinary eutectic alloys with nominal compositions of Fe-25Ta-22Ni-10Cr and Fe-15.5Nb-14.5Ni-6.0Cr were directionally solidified at 0.5 centimeter per hour. Their microstructure consisted of the fcc, iron solid-solution, matrix phase reinforced by about 41-volume-percent, hcp, faceted Fe2Ta fibers and 41-volume-percent, hcp, Fe2Nb lamellae for the tantalum- and niobium-containing alloys, respectively. The microstructural stability under thermal cycling and the temperature dependence of tensile properties were investigated. These alloys showed low elevated-temperature strength and were not considered suitable for application in aircraft-gas-turbine blades although they may have applicability as vane materials
Directionally solidified eutectic alloy gamma-beta
A pseudobinary eutectic alloy composition was determined by a previously developed bleed-out technique. The directionally solidified eutectic alloy with a composition of Ni-37.4Fe-10.0Cr-9.6Al (in wt%) had tensile strengths decreasing from 1,090 MPa at room temperature to 54 MPa at 1,100 C. The low density, excellent microstructural stability, and oxidation resistance of the alloy during thermal cycling suggest that it might have applicability as a gas turbine vane alloy while its relatively low high temperature strength precludes its use as a blade alloy. A zirconium addition increased the 750 C strength, and a tungsten addition was ineffective. The gamma=beta eutectic alloys appeared to obey a normal freezing relation
Primary arm spacing in chill block melt spun Ni-Mo alloys
Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt % Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacings measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient
Heat treating of a lamellar eutectic alloy (gamma/gamma prime + delta)
Eutectic superalloys are being developed at several laboratories for application as aircraft gas turbine airfoils. One such alloy was subjected to several heat treatments to determine if its mechanical properties could be improved. It was found that by partially dissolving the alloy at 1210 C and then aging at 900 C the tensile strength can be increased about 12 percent at temperatures up to 900 C. At 1040 C no change in tensile strength was observed. Times to rupture were measured between 760 and 1040 C and were essentially the same or greater than for as-grown material. Tensile and rupture ductility of the alloy are reduced by heat treatment. Photographs of the microstructure are shown
Microstructural changes caused by thermal treatment and their effects on mechanical properties of a gamma/gamma prime - delta eutectic alloy
Microstructural changes due to thermal treatments of a directionally solidified gamma/gamma'-delta eutectic alloy were investigated. Aging treatments of 8 to 48 hours and ranging from 750 to 1120 C were given to the alloy in both its as directionally solidified condition and after gamma' solutioning. Aging resulted in gamma' coarsening gamma precipitates in delta, and delta and gamma'' precipitates in delta. The tensile strength was increased about 12 percent at temperatures up to 900 C by a heat treatment. Times to rupture were essentially the same or greater than for as directionally solidified material. Tensile and rupture ductility in the growth direction of the alloy were reduced by the heat treatment
Carburization and heat treatment to cause carbide precipitation in gamma/gamma prime-delta eutectic alloys
In an attempt to improve their longitudinal shear strength, several directionally solidified eutectic alloy compositions with minor element modifications were pact, carburized, and heat treated to provide selective carbide precipitation at the cell and grain boundaries. The directionally solidified Ni-17.8 Nb-6Cr-2.5Al-3Ta (weight percent) alloy was selected for the shear strength evaluation because it showed the shallowest delta-denuded zone at the carburized surface. The carburization-carbide precipitation treatment, however, did not appear to improve the longitudinal shear strength of the alloy
Macrosegregation during plane front directional solidification of Csl-1 wt. percent Tll alloy
Macrosegregation produced during vertical Bridgeman directional solidification of Csl-1 wt. pct. Tll in crucibles of varying diameter, from 0.5 to 2.0 cm, was examined. Gravity driven convection is present in the melt even in the smallest crucible diameter of 0.5 cm. Observed solutal profiles are in agreement with the analytical boundary layer model of Favier which describes macrosegregation in the presence of convection. The scintillation efficiency of Csl decreases along the specimen length as the thallium iodide content of the alloy increases
Space Complexity of Perfect Matching in Bounded Genus Bipartite Graphs
We investigate the space complexity of certain perfect matching problems over
bipartite graphs embedded on surfaces of constant genus (orientable or
non-orientable). We show that the problems of deciding whether such graphs have
(1) a perfect matching or not and (2) a unique perfect matching or not, are in
the logspace complexity class \SPL. Since \SPL\ is contained in the logspace
counting classes \oplus\L (in fact in \modk\ for all ), \CeqL, and
\PL, our upper bound places the above-mentioned matching problems in these
counting classes as well. We also show that the search version, computing a
perfect matching, for this class of graphs is in \FL^{\SPL}. Our results
extend the same upper bounds for these problems over bipartite planar graphs
known earlier. As our main technical result, we design a logspace computable
and polynomially bounded weight function which isolates a minimum weight
perfect matching in bipartite graphs embedded on surfaces of constant genus. We
use results from algebraic topology for proving the correctness of the weight
function.Comment: 23 pages, 13 figure
Dendrite Tip Radii in Directionally Solidified Pb-8.4-Atmospheric-Percent-Au
The cell/dendrite tip radii in directionally solidified Pb-8.4at.%Au have been investigated as a function of the growth speed and thermal gradient in the liquid at the tip. Dendrite growth models are not able to predict quantitatively the tip radii and tip compositions separately because of the occurrence of thermosolutal convection during growth. However, the relationship between the destabilizing solutal gradient, the stabilizing thermal gradient and the capillarity at the tip assumed using the \u27\u27marginal stability\u27\u27 criterion is supported by the experimental data
- …