829 research outputs found

    Iron Oxide Nanoparticles Employed as Seeds for the Induction of Microcrystalline Diamond Synthesis

    Get PDF
    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. X-ray diffraction, visible, and ultraviolet Raman Spectroscopy, energy-filtered transmission electron microscopy , electron energy-loss spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to study the carbon bonding nature of the films and to analyze the carbon clustering around the seed nanoparticles leading to diamond synthesis. The results indicate that iron oxide nanoparticles lose the O atoms, becoming thus active C traps that induce the formation of a dense region of trigonally and tetrahedrally bonded carbon around them with the ensuing precipitation of diamond-type bonds that develop into microcrystalline diamond films under chemical vapor deposition conditions. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods

    Optical-phonon resonances with saddle-point excitons in twisted-bilayer graphene

    Get PDF
    Twisted-bilayer graphene (tBLG) exhibits van Hove singularities in the density of states that can be tuned by changing the twisting angle θ\theta. A θ\theta-defined tBLG has been produced and characterized with optical reflectivity and resonance Raman scattering. The θ\theta-engineered optical response is shown to be consistent with persistent saddle-point excitons. Separate resonances with Stokes and anti-Stokes Raman scattering components can be achieved due to the sharpness of the two-dimensional saddle-point excitons, similar to what has been previously observed for one-dimensional carbon nanotubes. The excitation power dependence for the Stokes and anti-Stokes emissions indicate that the two processes are correlated and that they share the same phonon.Comment: 5 pages, 6 figure

    Magnetic and electronic phase transitions probed by nanomechanical resonators

    Get PDF
    The reduced dimensionality of two-dimensional (2D) materials results in characteristic types of magnetically and electronically ordered phases. However, only few methods are available to study this order, in particular in ultrathin insulating antiferromagnets that couple weakly to magnetic and electronic probes. Here, we demonstrate that phase transitions in thin membranes of 2D antiferromagnetic FePS3, MnPS3 and NiPS3 can be probed mechanically via the temperature-dependent resonance frequency and quality factor. The observed relation between mechanical motion and antiferromagnetic order is shown to be mediated by the specific heat and reveals a strong dependence of the Néel temperature of FePS3 on electrostatically induced strain. The methodology is not restricted to magnetic order, as we demonstrate by probing an electronic charge-density-wave phase in 2H-TaS2. It thus offers the potential to characterize phase transitions in a wide variety of materials, including those that are antiferromagnetic, insulating or so thin that conventional bulk characterization methods become unsuitable

    Measurement of isotope shift in Eu II

    Get PDF
    The isotope shift between singly-charged ^Eu and ^Eu in the 4f^7(^8S^o)6s^9S_4-4f^7(^8S^o)6p_1/2>(J=4) transition at 4129 A has been measured using fast ion beam-laser technique. This Eu line has attracted interest in connection with efforts of obtaining a cosmochronometer based on observed Th/Eu abundance ratios. Knowledge of the isotope shift is of importance in order to check that contaminations from line blends do not contribute to the line intensity of Eu II. The measured value of the isotope shift -0.1527(2) cm-1 (= -4578 MHz) is consistent with the old spectroscopic value of Krebs and Winkler -0.1503(25) cm-1 using a Fabry Perot interferometer, while the accuracy is improved substantially.Comment: 12 pages, in press for Physica Scripta, in swete

    Evaluation of Lu-177-Dotatate treatment in patients with metastatic neuroendocrine tumors and prognostic factors

    Get PDF
    BACKGROUND: (177)Lu peptide receptor radionuclide therapy (PRRT) is a recently approved therapy in Spain that has been demonstrated to be a well-tolerated therapy for positive somatostatin receptor advanced gastroenteropancreatic neuroendocrine tumors. AIM: To determine the impact of PRRT on quality of life, radiologic and metabolic response, overall survival, prognostic factors and toxicity. METHODS: Thirty-six patients treated with (177)Lu-PRRT from 2016 to 2019 were included. The most frequent location of the primary tumor was the gastrointestinal tract (52.8%), pancreas (27.8%), and nongastropancreatic neuroendocrine tumor (11.1%). The liver was the most common site of metastasis (91.7%), followed by distant nodes (50.0%), bone (27.8%), peritoneum (25.0%) and lung (11.1%). Toxicity was evaluated after the administration of each dose. Treatment efficacy was evaluated by two parameters: stable disease and disease progression in response evaluation criteria in solid tumors 1.1 criterion and prognostic factors were tested. RESULTS: From 36 patients, 55.6% were men, with a median age of 61.1 +/- 11.8 years. Regarding previous treatments, 55.6% of patients underwent surgery of the primary tumor, 100% of patients were treated with long-acting somatostatin analogues, 66.7% of patients were treated with everolimus, 27.8% of patients were treated with tyrosine kinase inhibitor, and 27.8% of patients were treated with interferon. One patient received radioembolization, three patients received chemoembolization, six patients received chemotherapy. Hematological toxicity was registered in 14 patients (G1-G2: 55.5% and G3: 3.1%). Other events presented were intestinal suboclusion in 4 cases, cholestasis in 2 cases and carcinoid crisis in 1 case. The median follow-up time was 3 years. Currently, 24 patients completed treatment. Nineteen are alive with stable disease, two have disease progression, eight have died, and nine are still receiving treatment. The median overall survival was 12.5 mo (95% confidence interval range: 9.8-15.2), being inversely proportional to toxicity in previous treatments (P < 0.02), tumor grade (P < 0.01) and the presence of bone lesions (P = 0.009) and directly proportional with matching lesion findings between Octreoscan and computed tomography pre-PRRT (P < 0.01), , primary tumor surgery (P = 0.03) and metastasis surgery (P = 0.045). In a multivariate Cox regression analysis, a high Ki67 index (P = 0.003), a mismatch in the lesion findings between Octreoscan and computed tomography pre-PRRT (P < 0.01) and a preceding toxicity in previous treatments (P < 0.05) were risk factors to overall survival. CONCLUSION: Overall survival was inversely proportional to previous toxicity, tumor grade and the presence of bone metastasis and directly proportional to matching lesion findings between Octreoscan and computed tomography pre-PRRT and primary tumor and metastasis surgery

    Evidence for L1-associated DNA rearrangements and negligible L1 retrotransposition in glioblastoma multiforme

    Get PDF
    Background: LINE-1 (L1) retrotransposons are a notable endogenous source of mutagenesis in mammals. Notably, cancer cells can support unusual L1 retrotransposition and L1-associated sequence rearrangement mechanisms following DNA damage. Recent reports suggest that L1 is mobile in epithelial tumours and neural cells but, paradoxically, not in brain cancers. Results: Here, using retrotransposon capture sequencing (RC-seq), we surveyed L1 mutations in 14 tumours classified as glioblastoma multiforme (GBM) or as a lower grade glioma. In four GBM tumours, we characterised one probable endonuclease-independent L1 insertion, two L1-associated rearrangements and one likely Alu-Alu recombination event adjacent to an L1. These mutations included PCR validated intronic events in MeCP2 and EGFR. Despite sequencing L1 integration sites at up to 250× depth by RC-seq, we found no tumour-specific, endonuclease-dependent L1 insertions. Whole genome sequencing analysis of the tumours carrying the MeCP2 and EGFR L1 mutations also revealed no endonuclease-dependent L1 insertions. In a complementary in vitro assay, wild-type and endonuclease mutant L1 reporter constructs each mobilised very inefficiently in four cultured GBM cell lines. Conclusions: These experiments altogether highlight the consistent absence of canonical L1 retrotransposition in GBM tumours and cultured cell lines, as well as atypical L1-associated sequence rearrangements following DNA damage in vivo

    A Grhl2-dependent gene network controls trophoblast branching morphogenesis

    Get PDF
    Healthy placental development is essential for reproductive success; failure of the feto-maternal interface results in pre-eclampsia and intrauterine growth retardation. We found that grainyhead-like 2 (GRHL2), a CP2-type transcription factor, is highly expressed in chorionic trophoblast cells, including basal chorionic trophoblast (BCT) cells located at the chorioallantoic interface in murine placentas. Placentas from Grhl2-deficient mouse embryos displayed defects in BCT cell polarity and basement membrane integrity at the chorioallantoic interface, as well as a severe disruption of labyrinth branching morphogenesis. Selective Grhl2 inactivation only in epiblast-derived cells rescued all placental defects but phenocopied intraembryonic defects observed in global Grhl2 deficiency, implying the importance of Grhl2 activity in trophectoderm-derived cells. ChIP-seq identified 5282 GRHL2 binding sites in placental tissue. By integrating these data with placental gene expression profiles, we identified direct and indirect Grhl2 targets and found a marked enrichment of GRHL2 binding adjacent to genes downregulated in Grhl2(-/-) placentas, which encoded known regulators of placental development and epithelial morphogenesis. These genes included that encoding the serine protease inhibitor Kunitz type 1 (Spint1), which regulates BCT cell integrity and labyrinth formation. In human placenta, we found that human orthologs of murine GRHL2 and its targets displayed co-regulation and were expressed in trophoblast cells in a similar domain as in mouse placenta. Our data indicate that a conserved Grhl2-coordinated gene network controls trophoblast branching morphogenesis, thereby facilitating development of the site of feto-maternal exchange. This might have implications for syndromes related to placental dysfunction

    Heritability of non-speech auditory processing skills

    Get PDF
    Recent insight into the genetic bases for autism spectrum disorder, dyslexia, stuttering, and language disorders suggest that neurogenetic approaches may also reveal at least one etiology of auditory processing disorder (APD). A person with an APD typically has difficulty understanding speech in background noise despite having normal pure-tone hearing sensitivity. The estimated prevalence of APD may be as high as 10% in the pediatric population, yet the causes are unknown and have not been explored by molecular or genetic approaches. The aim of our study was to determine the heritability of frequency and temporal resolution for auditory signals and speech recognition in noise in 96 identical or fraternal twin pairs, aged 6–11 years. Measures of auditory processing (AP) of non-speech sounds included backward masking (temporal resolution), notched noise masking (spectral resolution), pure-tone frequency discrimination (temporal fine structure sensitivity), and nonsense syllable recognition in noise. We provide evidence of significant heritability, ranging from 0.32 to 0.74, for individual measures of these non-speech-based AP skills that are crucial for understanding spoken language. Identification of specific heritable AP traits such as these serve as a basis to pursue the genetic underpinnings of APD by identifying genetic variants associated with common AP disorders in children and adults

    Identification of COVID-19 patients at risk of hospital admission and mortality: a European multicentre retrospective analysis of mid-regional pro-adrenomedullin

    Get PDF
    Background: Mid-Regional pro-Adrenomedullin (MR-proADM) is an inflammatory biomarker that improves the prognostic assessment of patients with sepsis, septic shock and organ failure. Previous studies of MR-proADM have primarily focussed on bacterial infections. A limited number of small and monocentric studies have examined MR-proADM as a prognostic factor in patients infected with SARS-CoV-2, however there is need for multicenter validation. An evaluation of its utility in predicting need for hospitalisation in viral infections was also performed. Methods: An observational retrospective analysis of 1861 patients, with SARS-CoV-2 confirmed by RT-qPCR, from 10 hospitals across Europe was performed. Biomarkers, taken upon presentation to Emergency Departments (ED), clinical scores, patient demographics and outcomes were collected. Multiclass random forest classifier models were generated as well as calculation of area under the curve analysis. The primary endpoint was hospital admission with and without death. Results: Patients suitable for safe discharge from Emergency Departments could be identified through an MR-proADM value of ≤ 1.02&nbsp;nmol/L in combination with a CRP (C-Reactive Protein) of ≤ 20.2&nbsp;mg/L and age ≤ 64, or in combination with a SOFA (Sequential Organ Failure Assessment) score &lt; 2 if MR-proADM was ≤ 0.83&nbsp;nmol/L regardless of age. Those at an increased risk of mortality could be identified upon presentation to secondary care with an MR-proADM value of &gt; 0.85&nbsp;nmol/L, in combination with a SOFA score ≥ 2 and LDH &gt; 720 U/L, or in combination with a CRP &gt; 29.26&nbsp;mg/L and age ≤ 64, when MR-proADM was &gt; 1.02&nbsp;nmol/L. Conclusions: This international study suggests that for patients presenting to the ED with confirmed SARS-CoV-2 infection, MR-proADM in combination with age and CRP or with the patient’s SOFA score could identify patients at low risk where outpatient treatment may be safe
    • …
    corecore