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Abstract

Recent insight into the genetic bases for autism spectrum disorder, dyslexia, stuttering and 

language disorders suggest that neurogenetic approaches may also reveal at least one etiology of 

auditory processing disorder (APD). A person with an APD typically has difficulty understanding 

speech in background noise despite having normal pure-tone hearing sensitivity. The estimated 

prevalence of APD may be as high as 10% in the pediatric population, yet the causes are unknown 

and have not been explored by molecular or genetic approaches. The aim of our study was to 

determine the heritability of frequency and temporal resolution for auditory signals and speech 

recognition in noise in 96 identical or fraternal twin-pairs, aged 6-11 years. Measures of auditory 

processing of non-speech sounds included backward masking (temporal resolution), notched noise 

masking (spectral resolution), pure-tone frequency discrimination (temporal fine structure 
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sensitivity), and nonsense syllable recognition in noise. We provide evidence of significant 

heritability, ranging from 0.32-0.74, for individual measures of these non-speech based auditory 

processing skills that are crucial for understanding of spoken language. Identification of specific 

heritable auditory processing traits such as these serve as a basis to pursue the genetic 

underpinnings of APD by identifying genetic variants associated with common auditory 

processing disorders in children and adults.
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INTRODUCTION

Auditory processing (AP) refers to neural coding, synthesis, and analysis of sounds by both 

the peripheral and central auditory system and other multimodal regions of the brain. Skills 

important to AP include spatial localization and lateralization, discrimination, grouping, 

temporal aspects of hearing (e.g. resolution, integration and ordering) and effective hearing 

in the presence of competing or degraded signals (1). An auditory processing disorder 

(APD) occurs when there is a functional deficit in one or more of these skills; as such, APDs 

are phenotypically heterogeneous.

The most common clinical presentation of an APD is disproportionate difficulty 

understanding speech in degraded listening situations, such as background noise or 

reverberant rooms, despite normal hearing sensitivity (2-4). Developmental APD presents in 

childhood with no other identified etiological or risk factors such as neurologic damage 

(acquired APD) or peripheral hearing loss (secondary APD), and can persist into adulthood 

(5, 6). In the case of a child, caregivers may notice that the child appears to hear, but is not 

listening (7). The presentation of a developmental APD may be intertwined with that of 

other communication and learning disorders such as language delay, dyslexia and problems 

with attention (8, 9). While any causal relationships of these sometimes overlapping 

disorders are unclear, there are data to suggest that there may be a shared etiology in some 

cases (10).

There is no gold standard for the diagnosis of APDs, neither are there any pathognomonic 

features. APD is typically diagnosed based on reduced performance on one or more tests 

designed to assess AP skills. However, there is no consensus on the components of an 

appropriate test battery, nor are there definitive criteria for interpretation of these tests (11). 

Hind and colleagues (12) estimate the prevalence of isolated APD in the general population 

of the United Kingdom to be 0.5-1%. In combination with prevalence statistics for other 

learning disorders (learning disability (13), attention deficit disorder (14), and intellectual 

disability (15)), which may co-occur with APD in 30-70% of the cases (16-18) we estimate 

the overall prevalence of APD is around 10%. However, without a consensual definition and 

standardized diagnostic criteria, it is difficult to determine actual prevalence (19). One of the 

challenges in assessing AP skills is the overlapping need for auditory perception and 

cognitive processes such as attention, memory, and decision-making as well as the 
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requirement for verbal labeling or other language-based responses (20). Complementary to 

direct measures of AP are questionnaires formulated to assess communication and listening 

difficulties that parallel and objectively capture parent or teacher concerns, such as the 

Children’s Communication Checklist (CCC-2)(21).

Identification of specific heritable AP traits would provide a foundation to determine the 

genetic and physiopathogenic underpinnings, clarify relationships with other neurocognitive 

disorders, and inform therapeutic interventions for APD. Twin studies are a powerful 

approach to evaluate and estimate the genetic, environmental and stochastic contributions to 

a specific trait. Twins raised together experience essentially the same environment. 

Monozygotic ((MZ), identical twins) are usually genetically identical, while dizygotic 

((DZ), fraternal twins) share on average 50% of their segregating genome. By comparing the 

correlation in traits between MZ twin-pairs with the correlation between DZ twin-pairs, an 

estimate of the degree of variation that can be ascribed to shared genes, known as heritability 

(h2), can be calculated (22).

We previously examined heritability of speech-based AP skills and estimated that 

approximately 73% of the variance in dichotic listening and 46% of the variance in time-

compressed speech understanding were attributable to genetic variation in adults (23). Given 

the considerable cognitive and linguistic demands of these tests, concern arises as to whether 

the heritability estimates for dichotic and time-compressed speech reflect those demands 

rather than the auditory aspects of the tests. The aim of the present study differs from this 

previous work in that it examines genetic and environmental contributions to phenotypic 

variance in temporal and spectral processing of non-speech sounds. Here, we report four 

non-speech measures of spectral and temporal auditory processing with heritability 

estimates (h2) ranging from 0.61-0.74 in our twin cohort, providing evidence of substantial 

genetic influence on variance of this trait. These non-speech AP skills are important factors 

for accurate and efficient coding and recognition of the dynamic features of auditory signals 

fundamental to speech perception and segregation of speech from background sounds during 

language development (24, 25).

MATERIALS AND METHODS

Participants

We recruited 192 twin pairs, aged 6y-0m to 11y-11m, comprising 122 MZ twin pairs (60 

males and 62 females; mean age 9.47 years) and 70 same-sex DZ twin pairs (30 males and 

40 females: mean age 8.83 years) attending the Annual Twins Days Festival in Twinsburg, 

Ohio, USA in 2009 and 2010. Zygosity was determined by molecular genetic analyses as 

described below. Age and sex distributions for the MZ and DZ twin groups were comparable 

(age: p=0.09, t=1.731, df=94; sex: p=0.55, χ2=0.357, df=1). We obtained written, informed 

consent from a parent, and either written or verbal assent from each participant. This study 

protocol (00-DC-0073) was approved by the Combined Neuroscience Institutional Review 

Board, National Institutes of Health, Bethesda, MD, USA.

Enrollment into the protocol required participation by both twins who each had to meet all 

inclusion but no exclusion criteria. All participants were required to be native speakers of 
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American English, and have a negative history of significant head trauma, brain surgery, or 

ear surgery other than tympanostomy tubes. Eligibility required passing otoscopic, 

tympanometric and hearing screenings at the time of the study. Eligibility criteria were 

reviewed with the parents and a brief otologic history was obtained for each participant prior 

to participation. Otoscopic examination was conducted by an otolaryngologist (AJG) to rule 

out evidence of active outer or middle ear disease and occluding cerumen. Middle ear 

function was screened using a GSI-38 immittance bridge (Grason Stadler Inc., Eden Prairie, 

MN, USA) to rule out significant negative middle ear pressure (< −200 daPa) and reduced 

peak static compliance (< 0.3 ml). Air-conducted pure-tones were screened using a Maico 

41 audiometer (MAICO Diagnostics, Eden Prairie, MN, USA) at 20 dB HL for 1000, 2000, 

3000 and 4000 Hz delivered via Ear Tone ER-3A insert earphones (Etymotic, Inc., Elk 

Grove Village, IL, USA).

Test environment

All study tests were administered in a quiet room located in a building adjacent to the Twins 

Days festival site. Testing was conducted in private cubicles to ensure minimal visual and 

auditory distraction. Ambient noise levels were monitored continuously during the study test 

sessions using a Larson Davis Laboratories (Depew, NY, USA) Model 700 dosimeter, which 

showed a time-weighted average of 54.1 dBA and a peak signal of 86.2 dBA. Testing was 

conducted or supervised by licensed audiologists (CB, LH, KK, MM, AR, or CZ). All 

testers were formally trained in administration of the IMAP test battery and related study 

procedures.

Test battery of auditory processing and cognition

Participants were tested during a 1-hour session using five non-speech measures of AP, one 

speech-in-noise test, and three measures of non-verbal cognitive skills and short term 

memory from the previously described IMAP protocol (26). The test battery was presented 

using laptop computers running customized software (MRC Institute of Hearing Research, 

System for Testing Auditory Responses [IHR-STAR], Nottingham, UK) (27) that generated 

test stimuli in a randomized order of administration for the AP tests, and ensured that test 

protocols were followed (26). All auditory stimuli were presented through Sennheiser HD25 

headphones (Wedemark, Germany). AP and cognitive tests were interleaved. The tester 

provided positive reinforcement, in the form of verbal praise and stickers, as needed during 

each session in order to maintain motivation for the child.

To evaluate temporal processing we used backward masking without a temporal gap 

between the target tone and the masker (BM), backward masking with a 50-ms temporal gap 

between the target tone and masker (BM50), and frequency discrimination (FD) (Fig. 1a, b, 
e). To assess spectral processing, we used simultaneous masking without (SM) and with a 

spectral notch (SMN) surrounding the target frequency (Fig. 1c, d). The test paradigm 

employed a 3-alternative, 3-interval forced choice adaptive staircase (3-down, 1-up) strategy 

(28), by which target stimuli varied based on correct and incorrect responses of the child 

according to methods previously described (19, 20, 26).
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The speech-in-noise test involved repetition of recorded VCV nonsense syllables in 3-band, 

single-male-talker-weighted, idealized speech-modulated noise (9) using matched 

procedures to the non-speech AP tests.

Cognitive tests comprised standardized measures of nonverbal reasoning and included 

nonverbal IQ (NVIQ) from the Matrices Reasoning subtest of the Wechsler Abbreviated 

Scale of Intelligence (29), working memory for forward and backward digit span, Wechsler 

Intelligence Scale for Children – Fourth Edition (30), and phonological processing and 

memory measured by nonsense word repetition (NWR) subtest of the Developmental 

Neuropsychological Assessment (31).

While the twins were participating in the study tests, an accompanying parent completed the 

CCC-2 (U.S. Edition) a standardized 70-item questionnaire used to assess a child’s 

communication and social interaction abilities (21). Parents also completed a brief 

questionnaire regarding their child’s hearing, developmental and otologic history. The same 

parent completed questionnaires for both twins and the full set of questionnaires was 

completed for one child at a time.

Zygosity determination

Buccal swab samples were collected from each twin participant and DNA was extracted 

using a standard protocol (32). The DNA was PCR-amplified for STR markers and analyzed 

until genotypes at a minimum of 14 genetically unlinked marker loci could be scored for 

each twin pair. Twins were considered monozygous if they had concordant genotypes for all 

marker loci or dizygous if they had discordant genotypes for at least five STR markers (23).

Data analysis

Pretreatment of data—Thresholds for individual AP measures were calculated by 

averaging the target level or frequency in the last three trials of each track. Two derived AP 

scores, temporal resolution (TR; TR=BM- BM50) and frequency resolution (FR; FR=SM-

SMN), were calculated. This subtraction process was designed to eliminate the influence of 

non-sensory factors such as memory on performance(20). Raw scores for both the individual 

and derived AP measures were corrected for age by simple linear regression.

The summed responses for each raw subscale score of the CCC-2 were converted to age-

based standard scores and a generalized communication composite score (GCC) score was 

calculated based on the first eight subscales (21, 33). Cognitive tests were scored according 

to standard methods (29-31).

Comparisons between twin groups (MZ and DZ) for age and sex was based on twin pairs. A 

chi-square test was used to compare groups for sex, and an independent sample t-test was 

used to compare groups for age. Comparisons of performance on the AP and cognitive tests 

between twin types were conducted using a mixed model with zygosity as the fixed factor, 

age as a covariate for the AP measures, and pairs as a random factor.

Twins modeling and heritability estimates—For each of the age-corrected AP 

measures, we calculated Pearson correlations between co-twin pairs within the MZ and DZ 
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groups. Since this involves arbitrarily assigning the siblings in each twin pair to two groups 

(i.e., A and B), we averaged correlations from over 500 random assignments of all twin 

pairs. The values obtained in this way were very close to the intraclass correlation, which 

quantifies the degree to which, in this case, siblings’ performance resembles one another. 

Reported p-values were computed from the average correlations.

We then applied genetic model-fitting techniques using Mx structural equation modeling 

software (Version 1.70a) (34) to obtain estimates of the contribution of additive (A) and 

dominant (D) genetic components and shared (C) and unique (E) environmental factors 

influencing test performance (Fig. 2) (22). Genetic modeling allows quantitative 

decomposition of the total variance of the observed trait into contributions from these four 

factors (A, C, D, E), which provide the fractions a2, c2, d2, and e2 of the total variance, 

respectively. By iterative comparisons of combinations of these factors, the most compatible 

and parsimonious model is determined and estimates of heritable and environmental 

influence can be made.

Standard hierarchic χ2 tests in combination with Akaike’s Information Criterion (AIC = χ2 

– 2df) were used to select the best fitting model (22). The selected model reflects the best 

balance of goodness-of-fit and parsimony. Since our data set contained missing values for 

individual tests, the genetic models were fitted using the full-information maximum 

likelihood method, avoiding the need to discard subjects for whom the data on their co-twin 

were missing. This method also avoided randomly assigning twins to one of two groups as is 

necessary when a covariance matrix is submitted to the Mx software.

As a complement to this univariate analysis, multivariate analysis was conducted to provide 

further insight into the nature of the genetic and environmental factors influencing the AP 

measures using a common pathway model (Fig. 3) fitted with a single common latent factor 

for the four masking measures (BM, BM50, SM, SMN), and for all five non-speech AP 

measures (FD, BM, BM50, SM, and SMN). The common pathway model assumes that 

variation in each of the observed measures is derived from a common latent factor (in our 

case, auditory processing), and the model estimates genetic and environmental contributions 

to the variation of this factor. In addition, this model takes additional measure-specific 

genetic influences into account.

RESULTS

Both twin groups performed similarly on auditory processing and cognitive tests. Each 

component test of the IMAP battery was completed by the majority of participants (Table 1) 

and 95% completed the entire test battery. We compared test performance between the MZ 

and DZ twin groups in toto in order to identify any differences in performance between the 

two groups. Performance on tests of BM, BM50, SMN and FD were not significantly 

different between the MZ and DZ groups (p>0.05). There was a significant difference 

between twin groups for results of the SM test (p=0.006). Overall group performance by our 

twin cohort (Table 1; Supplemental Fig. S1 a-e) was comparable to that previously reported 

for all of the non-speech AP measures (Supplemental Fig. S1 f-j) (20). Performance on the 

two derived AP scores, TR and FR, was not significantly different between the MZ and DZ 
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groups (p>0.05; Table 1). Results for the VCV speech-in-noise test, NVIQ, NWR, and short-

term memory (forward and backward recall of digits), as well as the GCC score of the 

CCC-2 parental questionnaire did not show a significant effect of zygosity (p>0.05; Table 1). 

These findings suggest that group differences in AP and cognitive test performance between 

the MZ and DZ twins were not confounding factors for heritability assessment.

In order to determine the degree to which twin pairs co-varied on the same trait, 

performance correlations were evaluated for both MZ and DZ co-twin pairs for all raw AP 

test scores, the two derived AP scores, TR and FR, cognitive tests and the parental 

questionnaire derived GCC score (Table 2). Correlations between MZ co-twins were 

significantly greater than zero (p <0.05) for all measures of AP, whereas significant 

correlations in performance between DZ co-twin pairs were not observed for any of the AP 

results with the single exception of BM. A significant correlation was found between both 

MZ and DZ co-twins for overall memory, forward recall of digits and GCC scores. A 

significant correlation was found for MZ, but not DZ, co-twins for VCV, NWR and 

backward recall of digits. There were no significant correlations of NVIQ between either 

MZ or DZ twin pairs. The magnitude of correlations between MZ co-twins on the raw AP 

measures ranged from 0.357 to 0.784 and were substantially larger than those of DZ co-

twins that ranged from −0.118 to 0.344. These findings showed that MZ twin pairs 

performed similarly on tests of AP, while DZ pairs did not, suggesting a heritable 

component to these abilities.

Spectral and temporal AP skills were strongly influenced by genetic factors. Genetic model-

fitting of the genetic (A, D) and environmental (C, E) components was used to determine the 

most compatible and parsimonious models that influenced performance on the study tests. 

The AE model, derived from additive genetic and unique environmental contributions to 

variance in a trait, provides an estimate for heritability (h2) of a trait. This was the best 

fitting model for all five individual non-speech AP measures corrected for age by simple 

linear regression (Table 2 and Supplemental Table S1). Based on our data we estimate 

heritability for performance on the non-speech AP tests to range from 0.32 to 0.74. The CE 

model, derived from shared and unique environment components, provides an estimate for 

environmental contribution (c2) to variance in a trait. The CE model was the best fitting 

model for VCV and the derived measure of temporal resolution, TR, with estimated 

environmental contributions to these measures of 0.47 and 0.26, respectively. The best fitting 

model for the derived measure of frequency resolution, FR, was ADE (additive and 

dominant genetic and unique environmental components).

The AE model was the best fitting model for NWR with an estimated heritable contribution 

of 0.45 (Table 2 and Supplemental Table S1). The CE model was the best fitting model for 

NVIQ, and working memory with estimated environmental contributions to these measures 

of 0.20 for NVIQ, and 0.42, 0.43 and 0.27 for total, forward, and backward digit scores, 

respectively. The ACE model, which predicts simultaneous contributions from 

environmental and additive genetic factors, was the best fitting for the questionnaire derived 

GCC score (Table 2 and Supplemental Table S1). Based on the results of modeling, we 

conclude that the spectral and temporal AP skills we evaluated are strongly influenced by 

Brewer et al. Page 7

Eur J Hum Genet. Author manuscript; available in PMC 2016 September 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



genetic factors, whereas the cognitive skills we tested were more influenced by 

environmental factors.

Multivariate analysis supports heritability of non-speech AP skills. As a final step, we 

looked at two versions of the common pathway model (Fig. 3); one included all four of the 

masking measures (BM, BM50, SM, SMN) and the other included the masking measures 

and FD. Based on both the χ2 statistic and Akaike’s Information Criterion derived from the 

common pathway model, the genetic and environmental influences contributing to the 

common latent factors were best described by the AE model, which is in agreement with the 

univariate analysis. Ranking of the models remained the same with and without measure-

specific genetic factors for both the four masking measures and all five non-speech AP 

measures (Table 3), providing further evidence for the AE model. Variation in the common 

latent factor was found to be mainly due to genetic variation (86.7%) (Table 4). The 

common pathway model was also used to compute genetic and environmental correlation 

matrices for the individual AP measures. Genetic correlations were large (0.417-0.934), 

whereas environmental correlations were small (0.054-0.189)(Supplemental Table S2). 

These data corroborate and supply further evidence for the robust heritability of the AP 

skills observed using the univariate model and suggest that spectral and temporal processing 

of sound is reliant on genetic factors.

DISCUSSION

In order to discover any of the molecular neurogenetic causes of APD, it is essential to first 

identify auditory processing traits that are demonstrably heritable and can be reliably 

measured. Heritability estimates (h2) for four of the non-speech measures of spectral and 

temporal auditory processing (BM, BM50, SMN, and FD) ranged from 0.61-0.74 in our 

twin cohort, providing evidence of substantial genetic influence on variance of these traits. 

These estimates use AP scores corrected for age by simple linear regression. We have also 

conducted corresponding analyses based on raw AP scores (Supplemental Table S3) and for 

AP data corrected for both age and sex (Supplemental Table S4). Results show only minor 

quantitative differences whereas all qualitative conclusions are unchanged. In particular, the 

selected genetic models remain the same showing that our results are insensitive to the 

particular method of data correction.

Our estimates of heritability for AP skills are comparable in magnitude to those of other 

hearing-related phenotypes including dichotic listening (~0.73) (23) and tune deafness 

(~0.71-0.80) (35), as well as related cognitive disabilities such as dyslexia (0.44-0.75) (36), 

phonological processing (~0.72)(37) and late language emergence (0.42-0.44) (38). These 

AP measures (BM, BM50, SMN and FD) also appear to be reliable and reproducible as 

evidenced by the similarity between our current data and those obtained through a different 

subject recruitment paradigm in the United Kingdom (20)(Supplemental Fig. S1).

Multivariate modeling of all five AP measures versus the four AP measures incorporating 

masking alone suggests that the genetic correlations of FD to the four masking measures are 

somewhat lower than the genetic correlations between those measures (Supplemental Table 

S2). This implies that FD has more specific genetic contributions than the other measures.
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The best estimate for variance in performance on TR is for a shared environmental 

contribution. The best fitting model for FR is for the ADE model representing the additive- 

and dominant-genetic effects and unique environment effects. However, there is a negative 

correlation between DZ co-twins, which is implausible, and the validity of the FR results is 

doubtful. Taken together, these findings for the derived measures suggest that sensory 

aspects of perception are not so much subject to inherited influences, or that they simply 

reflect variability of the derived measures.

Performance on the speech-in-noise test was influenced more by environmental than genetic 

factors. Environmental influences accounted for approximately 47% of the variance in 

performance on the VCV test. This test required the child to repeat recorded VCV nonsense 

syllables spoken by an adult male speaker with a UK English accent in the presence of 

background noise. While this finding was not anticipated, we hypothesize that the UK-

accented English presented to American-accented English-speaking subjects added to the 

complexity of this task, so that it was no longer just recognition of the nonsense syllable in 

noise, but also resolution of accent differences.

There are a number of genes connected with neuronal migration that are associated with 

other complex neurodevelopmental disorders, including dyslexia (e.g. KIAA0319L)(39), 

language (e.g. CNTNAP2)(40), and autism (e.g. CNTNAP2 (41) that may merit 

investigation for their influence on AP. There are likely common genetic factors linking 

these phenotypically complex disorders that may influence current nosological 

classifications and our understanding of underlying etiology. Additionally, genes that 

regulate development of the cochlea, the auditory nerve, and central auditory pathways may 

influence the accurate representation and efficient processing of sounds (42).

In the quest to identify genetic factors that contribute to differences in AP abilities, the non-

speech AP skills of BM, BM50, FD and SMN show evidence of genetic influence with 

heritability estimates of 0.72, 0.61, 0.74 and 0.67, respectively. These AP measures have 

potential application to both human and animal models. We hypothesize that the heritability 

of these AP skills will translate to non-twin populations. Other population-based measures 

of heritability can test this hypothesis and further refine our heritability estimates.

It is important to acknowledge that current clinical test batteries for identification of APDs 

rely on a variety of speech and non-speech tests that are dominated by measures based on 

speech perception(43). The tests used in the current study investigate basic, non-speech 

auditory perception and are not the only skills that contribute to or underlie an APD. In 

combination with heritable speech-based AP traits of dichotic listening and time-compressed 

speech (23), these skills may serve as phenotypic measures in families segregating variation 

in such traits and in case-control genetic association studies that will help generate an 

understanding of at least one etiology of APD at the molecular and cellular levels.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic diagrams depicting a single trial, comprising three presentation intervals, for each 

of the individual auditory processing tests in the IMAP test battery. The task for each trial is 

to detect the interval containing the target tone. (a-d) The three boxes designate successive 

sound presentation intervals separated by standard interstimulus intervals [ISI]. The heavy 

horizontal bar represents the 20 msec target tone (arrow) and shading represents frequency 

bands of masking. (a) Backward masking (masker occurs immediately after the target tone) 

without a temporal gap between the masker and target tone [BM]. (b) Backward masking 
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with a 50-msec gap between the masker and target tone [BM50]. (c) Simultaneous masking 

(masker and target tone occur at the same time) [SM]. (d) Simultaneous masking with a 400 

Hz spectral notch in the masker [SMN]. (e) Frequency discrimination [FD]; the heavy 

horizontal bar represents a 200 msec tone that occurs in each of the presentation intervals; 

two of the tones are at 1000 Hz (standard) and the third is a target tone presented at a higher 

frequency. In all of these examples (a-e) the presentation interval containing the target 

stimulus is shown in the middle, but the target could occur randomly at any interval. msec, 

millisecond; Hz, Hertz
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Fig. 2. 
Path diagram for modeling of heritability and shared environment components of variance. 

Phenotypic variability is divided into additive genetic (A), dominant genetic (D), shared 

environmental (C) and unique (E) environmental components which provide the fractions, 

a2, d2, c2 and e2 of the total variance, respectively. AP=auditory processing; T1=twin 1; 

T2=twin 2

Brewer et al. Page 15

Eur J Hum Genet. Author manuscript; available in PMC 2016 September 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 3. 
Diagram of the ADE common pathway model for multivariate analysis showing specific 

genetic and environmental influences. The model assumes that the observed measures, 

frequency discrimination (FD), backward masking (BM), backward masking with a 50 ms 

gap (BM50), simultaneous masking (SM) and simultaneous masking with a spectral notch 

(SMN) (boxes) are derived from a common latent factor, auditory processing (AP) (ovals). 

The model estimates the genetic (Ac and Dc) and environmental contributions (Ec) to the 

variation in AP. In addition, the model takes into account measure-specific variance of traits 

(represented by the small circles below the observed measures), and splits this into a unique 

environmental part and an additive genetic part that correlates between twin pairs (small 

circles). Other models (ACE, AE and CE) are defined analogously. MZ=monozygotic; 

DZ=dizygotic; A=additive genetic contributions; D=dominant genetic contributions; 

E=unique environmental contributions, T1=twin 1 and T2=twin
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Table 1

Comparison of MZ and DZ performance on the IMAP tests

Test Number
completing

MZ DZ All twins

Mean (SD) Mean (SD) Mean (SD)

Auditory Processing Tests

 BM 190 55.00(16.21) 56.78 (15.26) 55.65 (15.85)

 BM50 191 42.77(12.08) 44.30(14.86) 43.33(13.15)

 FD 184 0.66(0.55) 0.89(0.58) 0.75(0.57)

 SM 191 70.33(5.52) 68.62(6.44) 69.70(5.91)

 SMN 189 49.01(7.95) 48.42(6.84) 48.79(7.55)

Derived Auditory Measures

 TR 190 12.39(12.81) 12.47(11.90) 12.42(12.45)

 FR 189 21.07(6.72) 19.94(7.35) 20.66(6.96)

Speech In Noise

 VCV 192 57.47(7.72) 56.52(5.17) 57.12(6.90)

CCC-2 Questionnaire

 GCC 190 79.76(13.92) 80.04(15.39) 79.86(14.42)

Cognitive Measures

 NVIQ 192 52.88(8.17) 51.99(9.25) 52.55(8.57)

 NWR 192 12.11(3.11) 12.26(3.42) 12.16(3.22)

 Memory (total) 192 8.51(2.35) 8.54(2.47) 8.52(2.39)

  Digit Forward 192 8.35(2.63) 8.04(2.49) 8.24(2.58)

  Digit Backward 192 9.39(2.46) 9.33(2.63) 9.37(2.52)

Units of measure for BM, BM50, SM, SMN, and VCV are dB SPL, TR and FR are dB, and FD is log (base 10) of frequency difference between 
the target and standard measured in Hertz. Units of measure for NVIQ, NWR, Memory (total)/Digit Forward/Digit Backward, and GCC are test-
specific normalized/standardized scores. sd=standard deviation; MZ=monozygotic; DZ=dizygotic
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Table 3

Summary and comparison of multivariate model fit for a single common latent factor for the four masking 

measures (BM, BM50, SM, SMN) and all five non-speech AP tests (four masking measures plus FD) derived 

from the common pathway model

Model χ 2 df p-value AIC

Including measure-specific genetic factors

Masking measures

ACE 86.29 57 0.007 −27.71

ADE 86.23 57 0.007 −27.77

AE 86.29 58 0.009 −29.71

CE 98.749 58 0.001 −17.251

E 139.8 59 0 21.8

All AP

ACE 146.868 92 0 −37.132

ADE 146.625 92 0 −37.375

AE 146.868 93 0 −39.132

CE 158.539 93 0 −27.461

E 191.563 94 0 3.563

Excluding measure-specific genetic factors

Masking measures

ACE 106.07 61 0 −15.93

ADE 106.002 61 0 −15.998

AE 106.07 62 0 −17.93

CE 119.69 62 0 −4.31

E 162.234 63 0 36.234

All AP

ACE 199.058 97 0 5.058

ADE 198.84 97 0 4.84

AE 199.058 98 0 3.058

CE 213.304 98 0 17.304

E 253.37 99 0 55.37

χ2 = Chi-square goodness of fit statistic; df=degrees of freedom; AIC= Akaike’s Information Criterion. Models are comprised of A=additive 
genetic, C=shared environment, E=unique environment, and D= dominant genetic components to phenotypic variance
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Table 4

Latent heritability estimates for all AP measures and variance decomposition of observed measures. 

Confidence intervals are 95% bootstrap intervals

Latent heritability: a2 = 0.867(0.672,1.000), e2 = 0.133(0.000,0.328)

Variance decomposition

Measure Rel. Latent Rel. Spec. A Rel. Spec. E

BM 0.479 (0.333,0.639) 0.231 (0.056,0.378) 0.290 (0.208,0.396)

BM50 0.645 (0.502,0.759) 0.000 (0.000,0.070) 0.350 (0.240,0.487)

SM 0.167 (0.047,0.349) 0.021 (0.000,0.301) 0.811 (0.508,0.942)

SMN 0.494 (0.324,0.666) 0.179 (0.030,0.340) 0.327 (0.167,0.534)

FD 0.227(0.081,0.440) 0.530 (0.326,0.667) 0.243 (0.148,0.356)

a2 = proportion of variability due to genetic influences: e2 = proportion of variability due to environmental influences; Rel. Latent = relative 
contribution of the latent factor; Rel. Spec. A = relative contribution of the specific genetic factor; Rel. Spec. E = relative contribution of the 
specific environmental factor.
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