171 research outputs found

    physicochemical properties in the crystalline bulk and in thin films deposited from the gas phase

    Get PDF
    Four analogues of the spin-crossover complex [Fe(H2Bpz2)2(phen)] (H2Bpz2 = dihydrobis(pyrazolyl)borate; 2) containing functionalized 1,10-phenanthroline (phen) ligands have been prepared; i.e., [Fe(H2Bpz2)2(L)], L = 4-methyl-1,10-phenanthroline (3), 5-chloro-1,10-phenanthroline (4), 4,7-dichloro-1,10-phenanthroline (5), and 4,7-dimethyl-1,10-phenanthroline (6). The systems are investigated by magnetic susceptibility measurements and a range of spectroscopies in the solid state and in thin films obtained by physical vapour deposition (PVD). Thermal as well as light-induced SCO behaviour is observed for 3–6 in the films. By contrast, thermal SCO in the solid state occurs only for 3 and 4 but is absent for 5 and 6. These findings are discussed in the light of cooperative and intermolecular interactions

    Synthesis, structure and properties of a hexarubidium heptamolybdate with bridging aqua ligands

    Get PDF
    The synthesis, single crystal structure, spectral, thermal and electrical properties of a hexarubidium heptamolybdate [Rb6(H2O)4(Mo7O24)] 1 is reported. The bridging binding modes of the unique (Mo7O24)6- ion and the four crystallographically independent coordinated water molecules results in coordination numbers ranging from 8 to 10 for the six unique Rb(I) ions in 1. Thermal decomposition of 1 results in the formation of an anhydrous residue of composition 7MoO3·3Rb2O. The cyclic voltammogram of an aqueous solution of 1 exhibits a single redox event characteristic of (Mo7O24)6- anion. Solution conductivity studies reveal the presence of hydrated Rb+ cations and uncoordinated (Mo7O24)6- anions. A comparative study of several alkali-metal heptamolybdates reveals a rich structural chemistry in terms of the binding modes of the (Mo7O24)6- anion

    Single Chain Magnet Based on Cobalt II Thiocyanate as XXZ Spin Chain

    Get PDF
    The cobalt(II) in [Co(NCS)(2)(4-methoxypyridine)(2)](n) are linked by pairs of thiocyanate anions into linear chains. In contrast to a previous structure determination, two crystallographically independent cobalt(II) centers have been found to be present. In the antiferromagnetic state, below the critical temperature (T-c=3.94 K) and critical field (H-c=290 Oe), slow relaxations of the ferromagnetic chains are observed. They originate mainly from defects in the magnetic structure, which has been elucidated by micromagnetic Monte Carlo simulations and ac measurements using pristine and defect samples. The energy barriers of the relaxations are Delta(tau 1)=44.9(5) K and Delta(tau 2)=26.0(7) K for long and short spin chains, respectively. The spin excitation energy, measured by using frequency-domain EPR spectroscopy, is 19.1 cm(-1) and shifts 0.1 cm(-1) due to the magnetic ordering. Ab initio calculations revealed easy-axis anisotropy for both Co-II centers, and also an exchange anisotropy J(xx)/J(zz) of 0.21. The XXZ anisotropic Heisenberg model (solved by using the density renormalization matrix group technique) was used to reconcile the specific heat, susceptibility, and EPR data

    Ignicoccus hospitalis and Nanoarchaeum equitans: ultrastructure, cell–cell interaction, and 3D reconstruction from serial sections of freeze-substituted cells and by electron cryotomography

    Get PDF
    Ultrastructure and intercellular interaction of Ignicoccus hospitalis and Nanoarchaeum equitans were investigated using two different electron microscopy approaches, by three-dimensional reconstructions from serial sections, and by electron cryotomography. Serial sections were assembled into 3D reconstructions, for visualizing the unusual complexity of I. hospitalis, its huge periplasmic space, the vesiculating cytoplasmic membrane, and the outer membrane. The cytoplasm contains fibres which are reminiscent to a cytoskeleton. Cell division in I. hospitalis is complex, and different to that in Euryarchaeota or Bacteria. An irregular invagination of the cytoplasmic membrane is followed by separation of the two cytoplasms. Simultaneous constriction of cytoplasmic plus outer membrane is not observed. Cells of N. equitans show a classical mode of cell division, by constriction in the mid-plane. Their cytoplasm exhibits two types of fibres, elongated and ring-shaped. Electron micrographs of contact sites between I. hospitalis and N. equitans exhibit two modes of interaction. One is indirect and mediated by thin fibres; in other cells the two cell surfaces are in direct contact. The two membranes of I. hospitalis cells are frequently seen in direct contact, possibly a prerequisite for transporting metabolites or substrates from the cytoplasm of one cell to the other. Rarely, a transport based on cargo vesicles is observed between I. hospitalis and N. equitans

    Insight into the proteome of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis: the major cytosolic and membrane proteins

    Get PDF
    Ignicoccus hospitalis, a hyperthermophilic, chemolithoautotrophic Crenarchaeon, is the host of Nanoarchaeum equitans. Together, they form an intimate association, the first among Archaea. Membranes are of fundamental importance for the interaction of I. hospitalis and N. equitans, as they harbour the proteins necessary for the transport of macromolecules like lipids, amino acids, and cofactors between these organisms. Here, we investigated the protein inventory of I. hospitalis cells, and were able to identify 20 proteins in total. Experimental evidence and predictions let us conclude that 11 are soluble cytosolic proteins, eight membrane or membrane-associated proteins, and a single one extracellular. The quantitatively dominating proteins in the cytoplasm (peroxiredoxin; thermosome) antagonize oxidative and temperature stress which I. hospitalis cells are exposed to at optimal growth conditions. Three abundant membrane protein complexes are found: the major protein of the outer membrane, which might protect the cell against the hostile environment, forms oligomeric complexes with pores of unknown selectivity; two other complexes of the cytoplasmic membrane, the hydrogenase and the ATP synthase, play a key role in energy production and conversion

    A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans

    Get PDF
    Sequencing of the complete genome of Ignicoccus hospitalis gives insight into its association with another species of Archaea, Nanoarchaeum equitans

    Interbank borrowing and lending between financially constrained banks

    Get PDF
    Some stylized facts about transactions among banks are not easily reconciled with coinsurance of short-term liquidity risks. In our model, interbank markets play a different role. We argue that lending to another bank can reduce a bank’s overall portfolio risk through diversification. If insolvency is costly, this diversification improves the interbank lender's funding liquidity, boosting credit supply to nonbanks. However, diversification comes at an endogenous cost that depends on bank-specific factors of interbank borrower and lender. The model provides a framework for understanding the importance of interbank lending for aggregate credit supply and the stability of banking systems. The model’s predictions are consistent with evidence documented in the literature that other theories cannot consistently explain
    • …
    corecore