55 research outputs found

    The effect of tidal flow directionality on tidal turbine performance characteristics

    Get PDF
    As marine turbine technology verges on the realm of economic viability the question of how long will these devices last is an important one. This paper looks at the axial bending moments experienced from CFD modelling of Cardiff University’s concept tidal turbine in a uniform profile for three different scenarios. The magnitude and direction in which the axial bending moment acts is an important feature in determining likely sources of wear in the drive train, such as bearings. By determining the source and magnitude of these bending moments, possibilities for reducing them and limiting their impact on devices can be made

    The effect of tidal flow directionality on tidal turbine performance characteristics

    Get PDF
    As marine turbine technology verges on the realm of economic viability the question of how long will these devices last is an important one. This paper looks at the axial bending moments experienced from CFD modelling of Cardiff University’s concept tidal turbine in a uniform profile for three different scenarios. The magnitude and direction in which the axial bending moment acts is an important feature in determining likely sources of wear in the drive train, such as bearings. By determining the source and magnitude of these bending moments, possibilities for reducing them and limiting their impact on devices can be made

    Same space, different standards : a review of cumulative effects assessment practice for marine mammals

    Get PDF
    The lead author is a PhD student, whose stipend during the undertaking of this work was provided by a James Watt scholarship (Heriot-Watt University). Financial support enabling the open access publication of this research was provided by Natural England - the government’s adviser for the natural environment in England.Marine mammals are vulnerable to a variety of acute and chronic anthropogenic stressors, potentially experiencing these in isolation, successively and/or simultaneously. Formal assessment of the likely impact(s) of the cumulative effects of multiple stressors on a defined population is carried out through a Cumulative Effects Assessment (CEA), which is a mandatory component of the Environmental Impact Assessment (EIA) process in many countries. However, for marine mammals, the information required to feed into CEA, such as thresholds for disturbance, frequency of multiple (and simultaneous) exposures, interactions between stressors, and individual variation in response, is extremely limited, though our understanding is slowly improving. The gaps in knowledge make it challenging to effectively quantify and subsequently assess the risk of individual and population consequences of multiple disturbances in the form of a CEA. To assess the current state of practice for assessing cumulative effects on marine mammals within UK waters, 93 CEAs were reviewed across eleven maritime industries. An objective framework of thirteen evaluative criteria was used to score each assessment on a scale of 13-52 (weak - strong). Scores varied significantly by industry. On average, the aquaculture industry produced the lowest scoring CEAs, whilst the large offshore windfarm industry (≥ 20 turbines) scored highest, according to the scoring criteria used. There was a significant increase in scores over the sample period (2009-2019), though this was mostly attributed to five industries (cable, large and small offshore wind farms, tidal and wave energy). There was inconsistency in the language used to define and describe cumulative effects and a lack of routinely applied methodology. We use the findings presented here, along with a wider review of the literature, to provide recommendations and discussion points aimed at supporting the standardisation and improvement of CEA practice. Although this research focused on how marine mammals were considered within UK CEAs, recommendations made are broadly applicable to assessments conducted for other receptors, countries and/or environments. Adoption of these proposals would help to ensure a more consistent approach, and would aid decision-makers and practitioners in mitigating any potential impacts, to ensure conservation objectives of marine mammal populations are not compromised.Publisher PDFPeer reviewe

    Systematic Review and Meta-Analysis of Randomised Trials to Ascertain Fatal Gastrointestinal Bleeding Events Attributable to Preventive Low-Dose Aspirin: No Evidence of Increased Risk.

    Get PDF
    BACKGROUND: Aspirin has been shown to lower the incidence and the mortality of vascular disease and cancer but its wider adoption appears to be seriously impeded by concerns about gastrointestinal (GI) bleeding. Unlike heart attacks, stroke and cancer, GI bleeding is an acute event, usually followed by complete recovery. We propose therefore that a more appropriate evaluation of the risk-benefit balance would be based on fatal adverse events, rather than on the incidence of bleeding. We therefore present a literature search and meta-analysis to ascertain fatal events attributable to low-dose aspirin. METHODS: In a systematic literature review we identified reports of randomised controlled trials of aspirin in which both total GI bleeding events and bleeds that led to death had been reported. Principal investigators of studies in which fatal events had not been adequately described were contacted via email and asked for further details. A meta-analyses was then performed to estimate the risk of fatal gastrointestinal bleeding attributable to low-dose aspirin. RESULTS: Eleven randomised trials were identified in the literature search. In these the relative risk (RR) of 'major' incident GI bleeding in subjects who had been randomised to low-dose aspirin was 1.55 (95% CI 1.33, 1.83), and the risk of a bleed attributable to aspirin being fatal was 0.45 (95% CI 0.25, 0.80). In all the subjects randomised to aspirin, compared with those randomised not to receive aspirin, there was no significant increase in the risk of a fatal bleed (RR 0.77; 95% CI 0.41, 1.43). CONCLUSIONS: The majority of the adverse events caused by aspirin are GI bleeds, and there appears to be no valid evidence that the overall frequency of fatal GI bleeds is increased by aspirin. The substantive risk for prophylactic aspirin is therefore cerebral haemorrhage which can be fatal or severely disabling, with an estimated risk of one death and one disabling stroke for every 1,000 people taking aspirin for ten years. These adverse effects of aspirin should be weighed against the reductions in vascular disease and cancer

    The effect of sepsis and its inflammatory response on mechanical clot characteristics: a prospective observational study

    Get PDF
    Purpose: Sepsis and its progression are known to have a major influence on the coagulation system. Current coagulation tests are of limited use when assessing coagulation in sepsis patients. This study aims to assess the potential for a new functional biomarker of clot microstructure, fractal dimension, to identify changes in the mechanical properties of clot microstructure across the sepsis spectrum (sepsis, severe sepsis and septic shock). Methods: A total of 100 patients that presented acutely to a large teaching hospital were included in this prospective observational study (50 sepsis, 20 severe sepsis and 30 septic shock) against a matched control of 44 healthy volunteers. Fractal analysis was performed, as well as standard markers of coagulation, and six plasma markers of inflammation. Results: Fractal dimension was significantly higher in the sepsis and severe sepsis groups than the healthy control (1.78 ± 0.07 and 1.80 ± 0.05 respectively vs 1.74 ± 0.03) (p < 0.001), indicating a significant increase in mechanical clot strength and elasticity consistent with a hypercoagulable state. Conversely, fractal dimension was significantly lower in septic shock (1.66 ± 0.10, p < 0.001), indicating a significant reduction in mechanical clot strength and functionality consistent with a hypocoagulable state. This corresponded with a significant increase in the inflammatory response. Conclusions: This study confirms that clot microstructure is significantly altered through the various stages of sepsis. Of particular importance was the marked change in clot development between severe sepsis and septic shock, which has not been previously reported

    The Role of Whole Blood Impedance Aggregometry and Its Utilisation in the Diagnosis and Prognosis of Patients with Systemic Inflammatory Response Syndrome and Sepsis in Acute Critical Illness

    Get PDF
    Objective: To assess the prognostic and diagnostic value of whole blood impedance aggregometry in patients with sepsis and SIRS and to compare with whole blood parameters (platelet count, haemoglobin, haematocrit and white cell count). Methods: We performed an observational, prospective study in the acute setting. Platelet function was determined using whole blood impedance aggregometry (multiplate) on admission to the Emergency Department or Intensive Care Unit and at 6 and 24 hours post admission. Platelet count, haemoglobin, haematocrit and white cell count were also determined. Results: 106 adult patients that met SIRS and sepsis criteria were included. Platelet aggregation was significantly reduced in patients with severe sepsis/septic shock when compared to SIRS/uncomplicated sepsis (ADP: 90.7±37.6 vs 61.4±40.6; p<0.001, Arachadonic Acid 99.9±48.3 vs 66.3±50.2; p = 0.001, Collagen 102.6±33.0 vs 79.1±38.8; p = 0.001; SD ± mean)). Furthermore platelet aggregation was significantly reduced in the 28 day mortality group when compared with the survival group (Arachadonic Acid 58.8±47.7 vs 91.1±50.9; p<0.05, Collagen 36.6±36.6 vs 98.0±35.1; p = 0.001; SD ± mean)). However haemoglobin, haematocrit and platelet count were more effective at distinguishing between subgroups and were equally effective indicators of prognosis. Significant positive correlations were observed between whole blood impedance aggregometry and platelet count (ADP 0.588 p<0.0001, Arachadonic Acid 0.611 p<0.0001, Collagen 0.599 p<0.0001 (Pearson correlation)). Conclusions: Reduced platelet aggregometry responses were not only significantly associated with morbidity and mortality in sepsis and SIRS patients, but also correlated with the different pathological groups. Whole blood aggregometry significantly correlated with platelet count, however, when we adjust for the different groups we investigated, the effect of platelet count appears to be non-significant

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore