124 research outputs found

    Machine-learning based noise characterization and correction on neutral atoms NISQ devices

    Full text link
    Neutral atoms devices represent a promising technology that uses optical tweezers to geometrically arrange atoms and modulated laser pulses to control the quantum states. A neutral atoms Noisy Intermediate Scale Quantum (NISQ) device is developed by Pasqal with rubidium atoms that will allow to work with up to 100 qubits. All NISQ devices are affected by noise that have an impact on the computations results. Therefore it is important to better understand and characterize the noise sources and possibly to correct them. Here, two approaches are proposed to characterize and correct noise parameters on neutral atoms NISQ devices. In particular the focus is on Pasqal devices and Machine Learning (ML) techniques are adopted to pursue those objectives. To characterize the noise parameters, several ML models are trained, using as input only the measurements of the final quantum state of the atoms, to predict laser intensity fluctuation and waist, temperature and false positive and negative measurement rate. Moreover, an analysis is provided with the scaling on the number of atoms in the system and on the number of measurements used as input. Also, we compare on real data the values predicted with ML with the a priori estimated parameters. Finally, a Reinforcement Learning (RL) framework is employed to design a pulse in order to correct the effect of the noise in the measurements. It is expected that the analysis performed in this work will be useful for a better understanding of the quantum dynamic in neutral atoms devices and for the widespread adoption of this class of NISQ devices.Comment: 11 pages, 5 figures, 3 table

    Lifetime measurements in 63^{63}Co and 65^{65}Co

    Get PDF
    Lifetimes of the 9/219/2^-_1 and 3/213/2^-_1 states in 63^{63}Co and the 9/219/2^-_1 state in 65^{65}Co were measured using the recoil distance Doppler shift and the differential decay curve methods. The nuclei were populated by multi-nucleon transfer reactions in inverse kinematics. Gamma rays were measured with the EXOGAM Ge array and the recoiling fragments were fully identified using the large-acceptance VAMOS spectrometer. The E2 transition probabilities from the 3/213/2^-_1 and 9/219/2^-_1 states to the 7/27/2^- ground state could be extracted in 63^{63}Co as well as an upper limit for the 9/217/219/2^-_1\rightarrow7/2^-_1 BB(E2) value in 65^{65}Co. The experimental results were compared to large-scale shell-model calculations in the pfpf and pfg9/2pfg_{9/2} model spaces, allowing to draw conclusions on the single-particle or collective nature of the various states.Comment: 8 pages, 8 figures, 1 table, accepted for publication in Physical Review

    Multinucleon transfer reactions and proton transfer channels

    Get PDF
    Transfer reactions have always been of great importance for nuclear structure and reaction mechanism studies. So far, in multinucleon transfer studies, proton pickup channels have been completely identified in atomic and mass numbers at energies close to the Coulomb barrier only in few cases. We measured the multinucleon transfer reactions in the 40Ar+208Pb system near the Coulomb barrier, by employing the PRISMA magnetic spectrometer. By using the most neutron-rich stable 40Ar beam we could populate, besidesneutron pickup and proton stripping channels, also neutron stripping and proton pickup channels. Comparison ofcross sections between different systems with the 208Pb target and with projectiles going from neutron-poor to neutron-rich nuclei, as well as between the data and GRAZING calculations, was carried out.Finally, recent results concerning the measurement of the excitation function from the Coulomb barrier to far below for the 92Mo+54Fe system, where both proton stripping and pickup channels were populated with similar strength, will be discussed

    Light and heavy fragments mass correlation in the 197Au+130Te transfer reaction

    Get PDF
    We studied multinucleon transfer (MNT) processes in the 197Au+130Te at Elab=1.07 GeV system coupling the PRISMA magnetic spectrometer to NOSE, an ancillary particle detector. We constructed a mass correlation matrix associating to each light fragment identified in PRISMA the corresponding mass distribution of the heavy partner detected in NOSE and, through the comparison with Monte Carlo simulations, we could infer about the role of neutron evaporation in multinucleon transfer reactions for the population of neutron-rich heavy nuclei

    Study of the neutron-rich region in the vicinity of 208Pb via multinucleon transfer reactions

    Get PDF
    The multinucleon transfer reaction mechanism was employed to populate isotopes around the doubly- magic 208 Pb nucleus. We used an unstable 94 Rb beam on 208 Pb targets of different thickness. Transfer channels were studied via the fragment-γ and γ-γ coincidences, by using MINIBALL γ spectrometer coupled to a particle detector. Gamma transitions associated to the different Pb isotopes, populated by the neutron transfers, are discussed in terms of excitation energy and spin. Fragment angular distributions were extracted, andcompared with the reaction model

    Search for 22^{22}Na in novae supported by a novel method for measuring femtosecond nuclear lifetimes

    Get PDF
    Classical novae are thermonuclear explosions in stellar binary systems, and important sources of 26^{26}Al and 22^{22}Na. While gamma rays from the decay of the former radioisotope have been observed throughout the Galaxy, 22^{22}Na remains untraceable. The half-life of 22^{22}Na (2.6 yr) would allow the observation of its 1.275 MeV gamma-ray line from a cosmic source. However, the prediction of such an observation requires good knowledge of the nuclear reactions involved in the production and destruction of this nucleus. The 22^{22}Na(p,γp,\gamma)23^{23}Mg reaction remains the only source of large uncertainty about the amount of 22^{22}Na ejected. Its rate is dominated by a single resonance on the short-lived state at 7785.0(7) keV in 23^{23}Mg. In the present work, a combined analysis of particle-particle correlations and velocity-difference profiles is proposed to measure femtosecond nuclear lifetimes. The application of this novel method to the study of the 23^{23}Mg states, combining magnetic and highly-segmented tracking gamma-ray spectrometers, places strong limits on the amount of 22^{22}Na produced in novae, explains its non-observation to date in gamma rays (flux < 2.5x10410^{-4} ph/(cm2^2s)), and constrains its detectability with future space-borne observatories.Comment: 18 pages, 3 figures, 1 tabl

    The mutable nature of particle-core excitations with spin in the one-valence-proton nucleus ¹³³Sb

    Get PDF
    The γ-ray decay of excited states of the one-valence-proton nucleus ¹³³Sb has been studied using cold-neutron induced fission of ²³⁵U and ²⁴¹Pu targets, during the EXILL campaign at the ILL reactor in Grenoble. By using a highly efficient HPGe array, coincidences between γ-rays prompt with the fission event and those delayed up to several tens of microseconds were investigated, allowing to observe, for the first time, high-spin excited states above the 16.6 μs isomer. Lifetimes analysis, performed by fast-timing techniques with LaBr₃(Ce) scintillators, revealed a difference of almost two orders of magnitude in B(M1) strength for transitions between positive-parity medium-spin yrast states. The data are interpreted by a newly developed microscopic model which takes into account couplings between core excitations (both collective and non-collective) of the doubly magic nucleus ¹³²Sn and the valence proton, using the Skyrme effective interaction in a consistent way. The results point to a fast change in the nature of particle-core excitations with increasing spin
    corecore