25 research outputs found
Impaired glucose transporter-1 degradation and increased glucose transport and oxidative stress in response to high glucose in chondrocytes from osteoarthritic versus normal human cartilage
Introduction Disorders that affect glucose metabolism, namely
diabetes mellitus (DM), may favor the development and/or
progression of osteoarthritis (OA). Thus far, little is known
regarding the ability of chondrocytes to adjust to variations in the
extracellular glucose concentration, resulting from hypoglycemia
and hyperglycemia episodes, and so, to avoid deleterious
effects resulting from deprivation or intracellular accumulation of
glucose. The aim of this study was to compare the ability of
normal and OA chondrocytes to regulate their glucose transport
capacity in conditions of insufficient or excessive extracellular
glucose and to identify the mechanisms involved and eventual
deleterious consequences, namely the production of reactive
oxygen species (ROS).1Center for Neurosciences and Cell Biology, and Faculty of Pharmacy, University of Coimbra, 3004-517 Coimbra, Portugal
2Orthopaedics Department, University Hospital of Coimbra, Avenida Bissaya Barreto, Bloco de Celas, 3000-075 Coimbra, Portugal
3Division of Veterinary Medicine, School of Veterinary Science and Medicine, Sutton Bonington Campus, University of Nottingham, Sutton Bonington
LE12 5RD, U
Chondrocyte incorporation onto electrospun scaffolds for cartilage tissue engineering
Sem resumo disponível.publishe
Electrosprayed cells proliferative behaviour in a 3d microporous scaffold
Sem resumo disponível.publishe
Bio-electrospraying of chondrocytes for cartilage tissue enginnering applications
Sem resumo disponível.publishe
Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: possible role in glucose sensing
ATP-sensitive potassium [K(ATP)] channels sense intracellular ATP/ADP levels, being essential components of a glucose-sensing apparatus in various cells that couples glucose metabolism, intracellular ATP/ADP levels and membrane potential. These channels are present in human chondrocytes, but their subunit composition and functions are unknown. This study aimed at elucidating the subunit composition of K(ATP) channels expressed in human chondrocytes and determining whether they play a role in regulating the abundance of major glucose transporters, GLUT-1 and GLUT-3, and glucose transport capacity. The results obtained show that human chondrocytes express the pore forming subunits, Kir6.1 and Kir6.2, at the mRNA and protein levels and the regulatory sulfonylurea receptor (SUR) subunits, SUR2A and SUR2B, but not SUR1. The expression of these subunits was no affected by culture under hyperglycemia-like conditions. Functional impairment of the channel activity, using a SUR blocker (glibenclamide 10 or 20 nM), reduced the protein levels of GLUT-1 and GLUT-3 by approximately 30% in normal chondrocytes, while in cells from cartilage with increasing osteoarthritic (OA) grade no changes were observed. Glucose transport capacity, however, was not affected in normal or OA chondrocytes. These results show that K(ATP) channel activity regulates the abundance of GLUT-1 and GLUT-3, although other mechanisms are involved in regulating the overall glucose transport capacity of human chondrocytes. Therefore, K(ATP) channels are potential components of a broad glucose sensing apparatus that modulates glucose transporters and allows human chondrocytes to adjust to varying extracellular glucose concentrations. This function of K(ATP) channels seems to be impaired in OA chondrocytes
Bio-electrospraying assessment toward in situ chondrocyte-laden electrospun scaffold fabrication
Electrospinning has been widely used to fabricate fibrous scaffolds for cartilage tissue engineering, but their small pores severely restrict cell infiltration, resulting in an uneven distribution of cells across the scaffold, particularly in three-dimensional designs. If bio-electrospraying is applied, direct chondrocyte incorporation into the fibres during electrospinning may be a solution. However, before this approach can be effectively employed, it is critical to identify whether chondrocytes are adversely affected. Several electrospraying operating settings were tested to determine their effect on the survival and function of an immortalized human chondrocyte cell line. These chondrocytes survived through an electric field formed by low needle-to-collector distances and low voltage. No differences in chondrocyte viability, morphology, gene expression, or proliferation were found. Preliminary data of the combination of electrospraying and polymer electrospinning disclosed that chondrocyte integration was feasible using an alternated approach. The overall increase in chondrocyte viability over time indicated that the embedded cells retained their proliferative capacity. Besides the cell line, primary chondrocytes were also electrosprayed under the previously optimized operational conditions, revealing the higher sensitivity degree of these cells. Still, their post-electrosprayed viability remained considerably high. The data reported here further suggest that bio-electrospraying under the optimal operational conditions might be a promising alternative to the existent cell seeding techniques, promoting not only cells safe delivery to the scaffold, but also the development of cellularized cartilage tissue constructs.publishe
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Dichotomous Sirtuins: Implications for Drug Discovery in Neurodegenerative and Cardiometabolic Diseases
Sirtuins (SIRT1-7), a class of NAD+-dependent deacylases, are central regulators of metabolic homeostasis and stress responses. While numerous salutary effects associated with sirtuin activation, especially SIRT1, are well documented, other reports show health benefits resulting from sirtuin inhibition. Furthermore, conflicting findings have been obtained regarding the pathophysiological role of specific sirtuin isoforms, suggesting that sirtuins act as 'double-edged swords'. Here, we provide an integrated overview of the different findings on the role of mammalian sirtuins in neurodegenerative and cardiometabolic disorders and attempt to dissect the reasons behind these different effects. Finally, we discuss how addressing these obstacles may provide a better understanding of the complex sirtuin biology and improve the likelihood of identifying effective and selective drug targets for a variety of human disorders
Standardised comparison of limonene-derived monoterpenes identifies structural determinants of anti-inflammatory activity
Mint species are widely used in traditional and conventional medicine as topical analgesics for osteoarthritic pain and for disorders of the gastrointestinal and respiratory tracts which are all associated with chronic inflammation. To identify the structural determinants of anti-inflammatory activity and potency which are required for chemical optimization towards development of new anti-inflammatory drugs, a selected group of monoterpenes especially abundant in mint species was screened by measuring bacterial lipopolysacharide (LPS)-induced nitric oxide (NO) production in murine macrophages. Nine compounds significantly decreased LPS-induced NO production by more than 30%. IC50 values were calculated showing that the order of potency is: (S)-(+)-carvone > (R)-(-)-carvone > (+)-dihydrocarveol > (S)-8-hydroxycarvotanacetone > (R)-8-hydroxycarvotanacetone > (+)-dihydrocarvone > (-)-carveol > (-)-dihydrocarveol > (S)-(-)-pulegone. Considering the carbon numbering relative to the common precursor, limonene, the presence of an oxygenated group at C6 conjugated to a double bond at C1 and an isopropenyl group and S configuration at C4 are the major chemical features relevant for activity and potency. The most potent compound, (S)-(+)-carvone, significantly decreased the expression of NOS2 and IL-1β in macrophages and in a cell model of osteoarthritis using primary human chondrocytes. (S)-(+)-carvone may be efficient in halting inflammation-related diseases, like osteoarthritis