52 research outputs found
Calcium oxalate modulation of tubular epithelial cell mitochondria: oxidative vulnerability due to restricted glutathione homeostasis.
Calcium oxalate (COM) crystals are the commonest component of kidney stones. These arise mainly in the distal tubules and collecting ducts. To gain further insight for the cellular damage in terms of oxidative stress caused by COM deposition, in vitro and in vivo model studies were performed. In vitro In renal distal tubule cells, COM and free oxalate treatment caused a 3- and 2-fold increase respectively in superoxide (O2*") formation, originating from mitochondria. This was measured by lucigenin chemiluminescence in digitonin permeabilised cells. However, hydroxyapatite produced a much lower but significant enhancement of 02*", whilst other micro-particles, uric acid crystals, brushite, zymosan, and latex beads had no effect. When EDTA was omitted during O2*" monitoring, COM induced mitochondrial 02*" was ablated indicating a requirement for the release of free oxalate. Mitochondrial oxalate uptake was studied by employing different oxalate transport inhibitors. Omitting phosphate from the media or using mersalyl both of which block dicarboxylate transport, caused a significant decrease in the 02*" formation evoked by COM treatments. Using the membrane potential sensitive-probe tetramethylrhodamine methyl ester (TMRM) together with confocal microscopy, evidence is presented that in cells where COM binding had occurred a marked change in the mitochondrial membrane potential (Aij/m) occurred. COM also modulated intracellular Ca2+ signalling as demonstrated using the Ca2- sensitive dye Fura-2 AM, and this was via a non-mitochondrial mechanism. In Vivo Using a rat model of crystalluria and renal stones initiated by treatment with ethylene glycol (EG) and 1, 25-dihydroxycholecalciferol (DHC), nephrolithiasis arose in kidneys and this was linked to oxidative stress. In the EG + DHC treated animals where crystalluria was evident, this oxidative insult was manifest by a decrease in total and mitochondrial glutathione concentration, as well as an increased activity of glucose-6-phosphate dehydrogenase. Severe kidney damage at the mitochondria level was a further observation, indicated by the diminished O2 consumption resulting in a lowered O2 production. In addition, histopathological analysis revealed increased renal tubular pathology characterised by obstruction, distension and interstitial inflammation. The above findings were not observed in hyperoxaluria (EG) or calciuria (DHC) and are therefore a direct effect of crystal formation in kidney distal tubules that have implications in kidney stone disease which are discussed
Loss of Nnt Increases Expression of Oxidative Phosphorylation Complexes in C57BL/6J Hearts
Nicotinamide nucleotide transhydrogenase (NNT) is a proton pump in the inner mitochondrial membrane that generates reducing equivalents in the form of NAPDH, which can be
used for anabolic pathways or to remove reactive oxygen species (ROS). A number of studies have
linked NNT dysfunction to cardiomyopathies and increased risk of atherosclerosis; however, biallelic
mutations in humans commonly cause a phenotype of adrenal insufficiency, with rare occurrences
of cardiac dysfunction and testicular tumours. Here, we compare the transcriptomes of the hearts,
adrenals and testes from three mouse models: the C57BL/6N, which expresses NNT; the C57BL/6J,
which lacks NNT; and a third mouse, expressing the wild-type NNT sequence on the C57BL/6J
background. We saw enrichment of oxidative phosphorylation genes in the C57BL/B6J in the heart
and adrenal, possibly indicative of an evolved response in this substrain to loss of Nnt. However,
differential gene expression was mainly driven by mouse background with some changes seen
in all three tissues, perhaps reflecting underlying genetic differences between the C57BL/B6J and
-6N substrains
Choice of gDNA isolation method has a significant impact on average murine Telomere Length estimates.
Telomere Length (TL) and integrity is significantly associated with age-related disease, multiple genetic and environmental factors. We observe mouse genomic DNA (gDNA) isolation methods to have a significant impact on average TL estimates. The canonical qPCR method does not measure TL directly but via the ratio of telomere repeats to a single copy gene (SCG) generating a T/S ratio. We use a monochromatic-multiplex-qPCR (mmqPCR) method which multiplexes the PCR and enables quantification of the target and the single copy gene within the same qPCR reaction. We demonstrate that TL measurements, from murine gDNA, isolated via Spin Columns (SC) and Magnetic Beads (MB), generate significantly smaller T/S ratios compared to gDNA isolated via traditional phenol/chloroform methods. The former methods may impede correct TL estimation by producing non representative fragment sets and reducing qPCR efficacy. This work highlights discrepancies in TL measurements due to different extraction techniques. We recommend the use of gDNA isolation methods that are shown to preserve DNA length and integrity, such as phenol/chloroform isolation. We propose that widely used high throughput DNA isolation methodologies can create spurious associations within a sample set, thus creating misleading data. We suggest that published TL associations should be revisited in the light of these data
Mylk3 null C57BL/6N mice develop cardiomyopathy, whereas Nnt null C57BL/6J mice do not.
The C57BL/6J and C57BL/6N mice have well-documented phenotypic and genotypic differences, including the infamous nicotinamide nucleotide transhydrogenase (Nnt) null mutation in the C57BL/6J substrain, which has been linked to cardiovascular traits in mice and cardiomyopathy in humans. To assess whether Nnt loss alone causes a cardiovascular phenotype, we investigated the C57BL/6N, C57BL/6J mice and a C57BL/6J-BAC transgenic rescuing NNT expression, at 3, 12, and 18 mo. We identified a modest dilated cardiomyopathy in the C57BL/6N mice, absent in the two B6J substrains. Immunofluorescent staining of cardiomyocytes revealed eccentric hypertrophy in these mice, with defects in sarcomere organisation. RNAseq analysis identified differential expression of a number of cardiac remodelling genes commonly associated with cardiac disease segregating with the phenotype. Variant calling from RNAseq data identified a myosin light chain kinase 3 (Mylk3) mutation in C57BL/6N mice, which abolishes MYLK3 protein expression. These results indicate the C57BL/6J Nnt-null mice do not develop cardiomyopathy; however, we identified a null mutation in Mylk3 as a credible cause of the cardiomyopathy phenotype in the C57BL/6N
Mutations in NNT encoding nicotinamide nucleotide transhydrogenase cause familial glucocorticoid deficiency
This work has been supported by the Medical Research Council UK (New Investigator Research Grant G0801265 to L.A.M., Clinical Research Training Fellowship Grant G0901980 to C.R.H. and Project Grant G0700767 to P.J.K.)
Oxidative stress and adrenocortical insufficiency
This work has been supported by the Wellcome Trust (Clinical Research
Training Fellowship grant number WT095984AIA to R P) and the Medical
Research Council UK (project grant number MR/K020455/1 to L A M
A False Start in the Race Against Doping in Sport: Concerns With Cycling’s Biological Passport
Professional cycling has suffered from a number of doping scandals. The sport’s governing bodies have responded by implementing an aggressive new antidoping program known as the biological passport. Cycling’s biological passport marks a departure from traditional antidoping efforts, which have focused on directly detecting prohibited substances in a cyclist’s system. Instead, the biological passport tracks biological variables in a cyclist’s blood and urine over time, monitoring for fluctuations that are thought to indirectly reveal the effects of doping. Although this method of indirect detection is promising, it also raises serious legal and scientific concerns. Since its introduction, the cycling community has debated the reliability of indirect biological-passport evidence and the clarity, consistency, and transparency of its use in proving doping violations. Such uncertainty undermines the legitimacy of finding cyclists guilty of doping based on this indirect evidence alone. Antidoping authorities should address these important concerns before continuing to pursue doping sanctions against cyclists solely on the basis of their biological passports
Predicted Benign and Synonymous Variants in CYP11A1 Cause Primary Adrenal Insufficiency Through Missplicing.
Primary adrenal insufficiency (PAI) is a potentially life-threatening condition that can present with nonspecific features and can be difficult to diagnose. We undertook next generation sequencing in a cohort of children and young adults with PAI of unknown etiology from around the world and identified a heterozygous missense variant (rs6161, c.940G>A, p.Glu314Lys) in CYP11A1 in 19 individuals from 13 different families (allele frequency within undiagnosed PAI in our cohort, 0.102 vs 0.0026 in the Genome Aggregation Database; P A, Thr330 = ; c.1173C>T, Ser391 =). Although p.Glu314Lys is predicted to be benign and showed no loss-of-function in an Escherichia coli assay system, in silico and in vitro studies revealed that the rs6161/c.940G>A variant, plus the c.990G>A and c.1173C>T changes, affected splicing and that p.Glu314Lys produces a nonfunctional protein in mammalian cells. Taken together, these findings show that compound heterozygosity involving a relatively common and predicted "benign" variant in CYP11A1 is a major contributor to PAI of unknown etiology, especially in European populations. These observations have implications for personalized management and demonstrate how variants that might be overlooked in standard analyses can be pathogenic when combined with other very rare disruptive changes.Medical Research Council UK Project (grant MR/K020455/1 to L.A.M.).J.C.A. is a Wellcome Trust Senior Research Fellow in Clinical Science (grants 098513/Z/12/Z and 209328/Z/17/Z) with research support from Great Ormond Street Hospital Children’s Charity (grant V2518) and the National Institute for Health Research, Great Ormond Street Hospital Biomedical Research Centre (grant IS-BRC-1215-20012).Funding also included support from The Mater Medical Research Institute (to M.H.) and National Institutes of Health (grant R01GM086596 to R.J.A.)
- …