56 research outputs found
Environmental gradients and the evolution of successional habitat specialization: A test case with 14 Neotropical forest sites
© 2015 British Ecological Society. Successional gradients are ubiquitous in nature, yet few studies have systematically examined the evolutionary origins of taxa that specialize at different successional stages. Here we quantify successional habitat specialization in Neotropical forest trees and evaluate its evolutionary lability along a precipitation gradient. Theoretically, successional habitat specialization should be more evolutionarily conserved in wet forests than in dry forests due to more extreme microenvironmental differentiation between early and late-successional stages in wet forest. We applied a robust multinomial classification model to samples of primary and secondary forest trees from 14 Neotropical lowland forest sites spanning a precipitation gradient from 788 to 4000 mm annual rainfall, identifying species that are old-growth specialists and secondary forest specialists in each site. We constructed phylogenies for the classified taxa at each site and for the entire set of classified taxa and tested whether successional habitat specialization is phylogenetically conserved. We further investigated differences in the functional traits of species specializing in secondary vs. old-growth forest along the precipitation gradient, expecting different trait associations with secondary forest specialists in wet vs. dry forests since water availability is more limiting in dry forests and light availability more limiting in wet forests. Successional habitat specialization is non-randomly distributed in the angiosperm phylogeny, with a tendency towards phylogenetic conservatism overall and a trend towards stronger conservatism in wet forests than in dry forests. However, the specialists come from all the major branches of the angiosperm phylogeny, and very few functional traits showed any consistent relationships with successional habitat specialization in either wet or dry forests. Synthesis. The niche conservatism evident in the habitat specialization of Neotropical trees suggests a role for radiation into different successional habitats in the evolution of species-rich genera, though the diversity of functional traits that lead to success in different successional habitats complicates analyses at the community scale. Examining the distribution of particular lineages with respect to successional gradients may provide more insight into the role of successional habitat specialization in the evolution of species-rich taxa
The Tree Biodiversity Network (BIOTREE-NET): prospects for biodiversity research and conservation in the Neotropics
Biodiversity research and conservation efforts in the tropics are hindered by the lack of knowledge of the assemblages found there, with many species undescribed or poorly known. Our initiative, the Tree Biodiversity Network (BIOTREE-NET), aims to address this problem by assembling georeferenced data from a wide range of sources, making these data easily accessible and easily queried, and promoting data sharing. The database (GIVD ID NA-00-002) currently comprises ca. 50,000 tree records of ca. 5,000 species (230 in the IUCN Red List) from \u3e2,000 forest plots in 11 countries. The focus is on trees because of their pivotal role in tropical forest ecosystems (which contain most of the world\u27s biodiversity) in terms of ecosystem function, carbon storage and effects on other species. BIOTREE-NET currently focuses on southern Mexico and Central America, but we aim to expand coverage to other parts of tropical America. The database is relational, comprising 12 linked data tables. We summarise its structure and contents. Key tables contain data on forest plots (including size, location and date(s) sampled), individual trees (including diameter, when available, and both recorded and standardised species name), species (including biological traits of each species) and the researchers who collected the data. Many types of queries are facilitated and species distribution modelling is enabled. Examining the data in BIOTREE-NET to date, we found an uneven distribution of data in space and across biomes, reflecting the general state of knowledge of the tropics. More than 90% of the data were collected since 1990 and plot size varies widely, but with most less than one hectare in size. A wide range of minimum sizes is used to define a \u27tree\u27. The database helps to identify gaps that need filling by further data collection and collation. The data can be publicly accessed through a web application at http://portal.biotreenet.com. Researchers are invited and encouraged to contribute data to BIOTREE-NET
La Red Internacional de Inventarios Forestales (BIOTREE-NET) en Mesoamérica: avances, retos y perspectivas futuras
Conservation efforts in Neotropical regions are often hindered by lack of data, since for many species there is a vacuum of information, and many species have not even been described yet. The International Network of Forest Inventory Plots (BIOTREE-NET) gathers and facilitates access to tree data from forest inventory plots in Mesoamerica, while encouraging data exchange between researchers, managers and conservationists. The information is organised and standardised into a single database that includes spatially explicit data. This article describes the scope and objectives of the network, its progress, and the challenges and future perspectives. The database includes above 50000 tree records of over 5000 species from more than 2000 plots distributed from southern Mexico through to Panama. Information is heterogeneous, both in nature and shape, as well as in the geographical coverage of inventory plots. The database has a relational structure, with 12 inter-connected tables that include information about plots, species names, dbh, and functional attributes of trees. A new system that corrects typographical errors and achieves taxonomic and nomenclatural standardization was developed using The Plant List (http://theplantlist.org/) as reference. Species distribution models have been computed for around 1700 species using different methods, and they will be publicly accessible through the web site in the future (http://portal.biotreenet.com). Although BIOTREE-NET has contributed to the development of improved species distribution models, its main potential lies, in our opinion, in studies at the community level. Finally, we emphasise the need to expand the network and encourage researchers willing to share data and to join the network and contribute to the generation of further knowledge about forest biodiversity in Neotropical regions
Co-limitation towards lower latitudes shapes global forest diversity gradients
The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers
Strong floristic distinctiveness across Neotropical successional forests.
Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (<20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species composition of early successional forests, which is mainly associated with biogeographic and environmental factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should use local species to assure that these distinct floras are maintained
Strong floristic distinctiveness across Neotropical successional forests
Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≤20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species composition of early successional forests, which is mainly associated with biogeographic and environmental factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should use local species to assure that these distinct floras are maintained
Co-limitation towards lower latitudes shapes global forest diversity gradients
The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers
Salas-Morales et al DataBase
The data contained in this data base are from 15 localities in Coastal Oaxaca, Mexico. The format is an Excel Book. Page 'Location' includes names and geographical coordinates of the localities. Page 'Height' contains the heights in m for all trees recorded in 10 2 x 50-m transects at each locality; next to the height of each individual the growth form of the plant is provided; the number of individuals varies between localities. The third page ('Environment') includes results of soil analyses for soil samples from each location; these analyses may come from the upper or the lower soil horizon; additionally, climatic data for each location are included, which were obtained through linear interpolation of data recorded at meteorological stations in the region with long climatic records
- …