169 research outputs found

    The End of the End of History

    Get PDF
    In this essay I will first examine why the religious right constitutes a significant challenge to liberal, democracies. By the latter I do not mean the ideological sense of liberal, but pluralistic democracies that uphold human rights and values, free and fair elections, and the autonomy of institutions from religious and political interference. I will then make the theoretical distinction between a democratic republic and a sophiacratic "republic", and argue that theocracy resembles the latter more than the former. Finally, I will note that the end of the end of democracy heralds a new "cold war" between fundamentalist religions and liberal democracies. The use of the "war on terror" a phony war that should never have begun, is making converts to the cause of fundamentalist Islam, and squanders tax revenues by the Bush administration heralds the end of the end of history and a new use of Orwellian tactics by the right. Reports of the end of history have been "greatly exaggerated"; the religious right is a serious challenge and even a threat to liberal democracies.En el presente ensayo, examinaré primeramente por qué las posiciones políticas de derecha de base religiosa constituyen un importante problema para las democracias liberales. Con este último término no me refiero al liberalismo como ideología política, sino a las democracias pluralistas que defienden los derechos y valores humanos, los procesos electorales libres y transparentes, y la autonomía de las instituciones con respecto a las injerencias por parte de instancias económicas y religiosas. Seguidamente, plantearé una distinción entre una república democrática y una "república" sofiacrática, arguyendo que la teocracia se asemeja más a la segunda que a la primera. Finalmente, haré notar que el final del final de la democracia anuncia una nueva "guerra fría" entre fundamentalismos religiosos y democracias liberales. El uso de la "guerra contra el terror" � una guerra falaz, que nunca debió haber siquiera comenzado, y que fomenta el aumento del número de partidarios del fundamentalismo islamista, además del despilfarro de los fondos públicos procedentes de los impuestos � por parte de la administración Bush anuncia el final del final de la historia, y el inicio del uso de tácticas dignas de Orwell por parte de la derecha. Las proclamas del final de la historia han sido "enormemente exageradas"; la derecha religiosa constituye un serio problema, e incluso una amenaza, para las democracias liberales

    Allocating conservation resources between areas where persistence of a species is uncertain

    Get PDF
    Research on the allocation of resources to manage threatened species typically assumes that the state of the system is completely observable; for example whether a species is present or not. The majority of this research has converged on modeling problems as Markov decision processes (MDP), which give an optimal strategy driven by the current state of the system being managed. However, the presence of threatened species in an area can be uncertain. Typically, resource allocation among multiple conservation areas has been based on the biggest expected benefit (return on investment) but fails to incorporate the risk of imperfect detection. We provide the first decision-making framework for confronting the trade-off between information and return on investment, and we illustrate the approach for populations of the Sumatran tiger (Panthera tigris sumatrae) in Kerinci Seblat National Park. The problem is posed as a partially observable Markov decision process (POMDP), which extends MDP to incorporate incomplete detection and allows decisions based on our confidence in particular states. POMDP has previously been used for making optimal management decisions for a single population of a threatened species. We extend this work by investigating two populations, enabling us to explore the importance of variation in expected return on investment between populations on how we should act. We compare the performance of optimal strategies derived assuming complete (MDP) and incomplete (POMDP) observability. We find that uncertainty about the presence of a species affects how we should act. Further, we show that assuming full knowledge of a species presence will deliver poorer strategic outcomes than if uncertainty about a species status is explicitly considered. MDP solutions perform up to 90% worse than the POMDP for highly cryptic species, and they only converge in performance when we are certain of observing the species during management: an unlikely scenario for many threatened species. This study illustrates an approach to allocating limited resources to threatened species where the conservation status of the species in different areas is uncertain. The results highlight the importance of including partial observability in future models of optimal species management when the species of concern is cryptic in nature

    Optimal allocation of conservation effort among subpopulations of a threatened species: How important is patch quality?

    Get PDF
    Money is often a limiting factor in conservation, and attempting to conserve endangered species can be costly. Consequently, a framework for optimizing fiscally constrained conservation decisions for a single species is needed. In this paper we find the optimal budget allocation among isolated subpopulations of a threatened species to minimize local extinction probability. We solve the problem using stochastic dynamic programming, derive a useful and simple alternative guideline for allocating funds, and test its performance using forward simulation. The model considers subpopulations that persist in habitat patches of differing quality, which in our model is reflected in different relationships between money invested and extinction risk. We discover that, in most eases, subpopulations that are less efficient to manage should receive more money than those that are more efficient to manage, due to higher investment needed to reduce extinction risk. Our simple investment guideline performs almost as well as the exact optimal strategy. We illustrate our approach with a case study of the management of the Sumatran tiger, Panthera tigris sumatrae, in Kerinei Seblat National Park (KSNP), Indonesia. We find that different budgets should be allocated to the separate tiger subpopulations in KSNP. The subpopulation that is not at risk of extinction does not require any management investment. Based on the combination of risks of extinction and habitat quality, the optimal allocation for these particular tiger subpopulations is an unusual case: subpopulations that occur in higher-quality habitat (more efficient to manage) should receive more funds than the remaining subpopulation that is in lower-quality habitat. Because the yearly budget allocated to the KSNP for tiger conservation is small, to guarantee the persistence of all the subpopulations that are currently under threat we need to prioritize those that are easier to save. When allocating resources among subpopulations of a threatened species, the combined effects of differences in habitat quality, cost of action, and current subpopulation probability of extinction need to be integrated. We provide a useful guideline for allocating resources among isolated subpopulations of any threatened species

    A New Way to Measure the World's Protected Area Coverage

    Get PDF
    Protected areas are effective at stopping biodiversity loss, but their placement is constrained by the needs of people. Consequently protected areas are often biased toward areas that are unattractive for other human uses. Current reporting metrics that emphasise the total area protected do not account for this bias. To address this problem we propose that the distribution of protected areas be evaluated with an economic metric used to quantify inequality in income— the Gini coefficient. Using a modified version of this measure we discover that 73% of countries have inequitably protected their biodiversity and that common measures of protected area coverage do not adequately reveal this bias. Used in combination with total percentage protection, the Gini coefficient will improve the effectiveness of reporting on the growth of protected area coverage, paving the way for better representation of the world's biodiversity

    Allocating conservation resources between areas where persistence of a species is uncertain

    Get PDF
    Abstract. Research on the allocation of resources to manage threatened species typically assumes that the state of the system is completely observable; for example whether a species is present or not. The majority of this research has converged on modeling problems as Markov decision processes (MDP), which give an optimal strategy driven by the current state of the system being managed. However, the presence of threatened species in an area can be uncertain. Typically, resource allocation among multiple conservation areas has been based on the biggest expected benefit (return on investment) but fails to incorporate the risk of imperfect detection. We provide the first decision-making framework for confronting the trade-off between information and return on investment, and we illustrate the approach for populations of the Sumatran tiger (Panthera tigris sumatrae) in Kerinci Seblat National Park. The problem is posed as a partially observable Markov decision process (POMDP), which extends MDP to incorporate incomplete detection and allows decisions based on our confidence in particular states. POMDP has previously been used for making optimal management decisions for a single population of a threatened species. We extend this work by investigating two populations, enabling us to explore the importance of variation in expected return on investment between populations on how we should act. We compare the performance of optimal strategies derived assuming complete (MDP) and incomplete (POMDP) observability. We find that uncertainty about the presence of a species affects how we should act. Further, we show that assuming full knowledge of a species presence will deliver poorer strategic outcomes than if uncertainty about a species status is explicitly considered. MDP solutions perform up to 90% worse than the POMDP for highly cryptic species, and they only converge in performance when we are certain of observing the species during management: an unlikely scenario for many threatened species. This study illustrates an approach to allocating limited resources to threatened species where the conservation status of the species in different areas is uncertain. The results highlight the importance of including partial observability in future models of optimal species management when the species of concern is cryptic in nature

    Geographical surrogates of genetic variation for selecting island populations for conservation

    Get PDF
    Aim: Threatened species often exist in small numbers in isolated populations. Limited financial resources usually constrain conservationists to allocate funds to a subset of these populations. Because obtaining information required to maximize the amount of genetic and phenotypic variation protected can be costly and time-consuming, the utility of surrogates should be explored. This study tests the efficacy of three simple and cost-effective geographical measures in capturing genetic and phenotypic variation in fragmented populations when setting conservation priorities. Location: Vanuatu archipelago. Methods: We used neutral genetic data (mtDNA and microsatellites) and morphometric data (a proxy for functional variation) for two bird species displaying different patterns of regional population genetic structure: Zosterops flavifrons and Zosterops lateralis. We tested the performance of three geographical surrogates (maximizing: geographical distance between islands; area of islands; geographical representation of islands), in representing divergence between and diversity within populations, constrained to the number of islands being protected. Results: Maximizing geographical separation of sites provided the best surrogate for a constrained budget ( 50% of the populations), the spatially most representative sites were often more effective. Selecting islands based on size retained about half of within-population genetic diversity; however, this was not much higher than selecting the islands randomly. Main conclusions: The ability of surrogates to capture genetic or phenotypic variation varied depending on the species, genetic markers and number of islands selected. While imperfect, selection of populations based on simple geographical surrogates for genetic and phenotypic variation will generally be better than random selection for conserving the evolutionary potential of threatened populations when time and money limit a more thorough and direct analyses of genetic and phenotypic variation

    Using ideal distributions of the time since habitat was disturbed to build metrics for evaluating landscape condition

    Get PDF
    Developing a standardized approach to measuring the state of biodiversity in landscapes undergoing disturbance is crucial for evaluating and comparing change across different systems, assessing ecosystem vulnerability and the impacts of destructive activities, and helping direct species recovery actions. Existing ecosystem metrics of condition fail to acknowledge that a particular community could be in multiple states, and the distribution of states could worsen or improve when impacted by a disturbance process, depending on how far the current landscape distribution of states diverges from pre-anthropogenic impact baseline conditions. We propose a way of rapidly assessing regional-scale condition in ecosystems where the distribution of age classes representing increasing time since last disturbance is suspected to have diverged from an ideal benchmark reference distribution. We develop two metrics that (1) compare the observed mean time since last disturbance with an expected mean and (2) quantify the summed shortfall of vegetation age-class frequencies relative to a reference age-class distribution of time since last disturbance. We demonstrate the condition metrics using two case studies: (1) fire in threatened southwestern Australian proteaceaous mallee-heath and (2) impacts of disturbance (fire and logging) in the critically endangered southeastern Australian mountain ash Eucalyptus regnans forest on the yellow-bellied glider Petaurus australis. We explore the effects of uncertainty in benchmark time since last disturbance, and evaluate metric sensitivity using simulated age-class distributions representing alternative ecosystems. By accounting for and penalizing too-frequent and too-rare disturbances, the summed shortfall metric is more sensitive to change than mean time since last disturbance. We find that mountain ash forest is in much poorer condition (summed shortfall 38.5 out of 100 for a 120-yr benchmark disturbance interval) than indicated merely by loss of extent (84% of vegetation remaining). Proteaceaous mallee-heath is in worse condition than indicated by loss of extent for an upper benchmark interval of 80\ua0yr, but condition almost doubles for the minimum tolerable time since last disturbance interval of 20\ua0yr. To fully describe ecosystem degradation, we recommend that our summed shortfall metric, focused on habitat quality and informed by biologically meaningful baselines, be added to existing condition measures focused on vegetation extent. This will improve evaluation of change in ecosystem states and enhance management of ecosystems in poor condition

    Active adaptive conservation of threatened species in the face of uncertainty

    Get PDF
    Adaptive management has a long history in the natural resource management literature, but despite this, few practitioners have developed adaptive strategies to conserve threatened species. Active adaptive management provides a framework for valuing learning by measuring the degree to which it improves long-run management outcomes. The challenge of an active adaptive approach is to find the correct balance between gaining knowledge to improve management in the future and achieving the best short-term outcome based on current knowledge. We develop and analyze a framework for active adaptive management of a threatened species. Our case study concerns a novel facial tumor disease affecting the Australian threatened species Sarcophilus harrisii: the Tasmanian devil. We use stochastic dynamic programming with Bayesian updating to identify the management strategy that maximizes the Tasmanian devil population growth rate, taking into account improvements to management through learning to better understand disease latency and the relative effectiveness of three competing management options. Exactly which management action we choose each year is driven by the credibility of competing hypotheses about disease latency and by the population growth rate predicted by each hypothesis under the competing management actions. We discover that the optimal combination of management actions depends on the number of sites available and the time remaining to implement management. Our approach to active adaptive management provides a framework to identify the optimal amount of effort to invest in learning to achieve long-run conservation objectives

    Improving policy efficiency and effectiveness to save more species: A case study of the megadiverse country Australia

    Get PDF
    Native flora and fauna species continue to decline in the megadiverse, wealthy, economically and politically stable nation of Australia despite current efforts in policy and management. Ongoing research is examining these declines, their causes and the adequacy of current policy, but strategies for improving the outcomes for threatened species have attracted less attention. We discuss several key aspects of Australia's national threatened species management approach that potentially hinder the efficiency and effectiveness of management: the threatened species listing process is lengthy and biased; recovery plan development is resource intensive, restricted to a subset of species and often not effective; funding for threatened species management is not allocated efficiently or transparently; and management is not designed to incorporate uncertainties and adapt to changing future threats. Based on these issues we recommend four changes to current process: rationalize listing and assessment processes; develop approaches to prioritize species-based and threat-based responses cost-effectively; estimate funds required to recover species and secure longer term funding; and accommodate uncertainties and new threats into the current planning framework. Cost-effective prioritization for species and threats identifies which actions are likely to achieve the greatest benefits to species per unit cost, thereby managing more species and threats with available funds. These improvements can be made without legislative reform, additional funding or socio-economic shifts. If implemented, we believe more Australian threatened species will benefit from current efforts. Many of the challenges facing Australia are analogous to issues in other countries including the United States, Canada and the United Kingdom and these recommendations could assist in improving threatened species management. (C) 2014 Elsevier Ltd. All rights reserved

    Identification of Lineage-Uncommitted, Long-Lived, Label-Retaining Cells in Healthy Human Esophagus and Stomach, and in Metaplastic Esophagus

    Get PDF
    Background & Aims The existence of slowly cycling, adult stem cells has been challenged by the identification of actively cycling cells. We investigated the existence of uncommitted, slowly cycling cells by tracking 5-iodo-2'-deoxyuridine (IdU) label-retaining cells (LRCs) in normal esophagus, Barrett's esophagus (BE), esophageal dysplasia, adenocarcinoma, and healthy stomach tissues from patients. Methods Four patients (3 undergoing esophagectomy, 1 undergoing esophageal endoscopic mucosal resection for dysplasia and an esophagectomy for esophageal adenocarcinoma) received intravenous infusion of IdU (200 mg/m2 body surface area; maximum dose, 400 mg) over a 30-minute period; the IdU had a circulation half-life of 8 hours. Tissues were collected at 7, 11, 29, and 67 days after infusion, from regions of healthy esophagus, BE, dysplasia, adenocarcinoma, and healthy stomach; they were analyzed by in situ hybridization, flow cytometry, and immunohistochemical analyses. Results No LRCs were found in dysplasias or adenocarcinomas, but there were significant numbers of LRCs in the base of glands from BE tissue, in the papillae of the basal layer of the esophageal squamous epithelium, and in the neck/isthmus region of healthy stomach. These cells cycled slowly because IdU was retained for at least 67 days and co-labeling with Ki-67 was infrequent. In glands from BE tissues, most cells did not express defensin-5, Muc-2, or chromogranin A, indicating that they were not lineage committed. Some cells labeled for endocrine markers and IdU at 67 days; these cells represented a small population (<0.1%) of epithelial cells at this time point. The epithelial turnover time of the healthy esophageal mucosa was approximately 11 days (twice that of the intestine). Conclusions LRCs of human esophagus and stomach have many features of stem cells (long lived, slow cycling, uncommitted, and multipotent), and can be found in a recognized stem cell niche. Further analyses of these cells, in healthy and metaplastic epithelia, is required
    • …
    corecore