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Abstract. Adaptive management has a long history in the natural resource management
literature, but despite this, few practitioners have developed adaptive strategies to conserve
threatened species. Active adaptive management provides a framework for valuing learning by
measuring the degree to which it improves long-run management outcomes. The challenge of
an active adaptive approach is to find the correct balance between gaining knowledge to
improve management in the future and achieving the best short-term outcome based on
current knowledge. We develop and analyze a framework for active adaptive management of a
threatened species. Our case study concerns a novel facial tumor disease affecting the
Australian threatened species Sarcophilus harrisii: the Tasmanian devil. We use stochastic
dynamic programming with Bayesian updating to identify the management strategy that
maximizes the Tasmanian devil population growth rate, taking into account improvements to
management through learning to better understand disease latency and the relative
effectiveness of three competing management options. Exactly which management action
we choose each year is driven by the credibility of competing hypotheses about disease latency
and by the population growth rate predicted by each hypothesis under the competing
management actions. We discover that the optimal combination of management actions
depends on the number of sites available and the time remaining to implement management.
Our approach to active adaptive management provides a framework to identify the optimal
amount of effort to invest in learning to achieve long-run conservation objectives.

Key words: active adaptive management; Bayesian updating; decision theory; learning; Markov decision
process; Sarcophilus harrisii; stochastic dynamic programming; Tasmania, Australia; Tasmanian devil facial
tumor disease.

INTRODUCTION

Conservation management faces the challenge of

making good decisions despite uncertainty about both

the ecology of the system to be managed and impact of

the management options on that system (Burgman et al.

2005). Uncertainty can manifest itself in a number of

aspects of knowledge (Regan et al. 2002). There may be

uncertainty around parameter estimates which lead us to

question the output of models (Caswell 2001). Managers

may also be uncertain about the model they have chosen

to represent the system (Chatfield 1995, Regan et al.

2002). Because models provide valuable tools with

which to investigate the response of systems to different

management scenarios and are commonly used to make

conservation decisions (e.g., Possingham et al. 1993,

Punt and Smith 1999), a number of techniques have

been proposed that quantify model uncertainty

(Burnham and Anderson 2002, Wintle et al. 2003) and

facilitate decisions that are coherent in the face of model

uncertainty (Burgman et al. 1993, Drechsler et al. 1998,

Shea and Possingham 2000, Yokomizo et al. 2003,

Regan et al. 2005, 2006).

Some uncertainty is effectively irreducible (e.g.,

natural variation/stochasticity), while other forms of

uncertainty may be reduced through learning. What is

not captured within most uncertainty analyses is our

ability to learn about a system while we are managing
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that system. Adaptive management, a systematic process

for improving management through learning, has long

been advocated as a suitable approach for ‘‘learning

while doing’’ (Holling 1978, Walters and Hilborn 1978,

Walters 1986). The conservation literature contains

numerous examples of adaptive approaches being

proposed as a way to improve knowledge, management

actions, and thus our ability to achieve our objectives,

without delaying implementation (Parma and NCEAS

Working Group on Population Management 1998, Shea

and Possingham 2000, Shea et al. 2002, Varley and

Boyce 2006, Rout et al. 2009). Until recently, however,

almost all illustrations have used a ‘‘passive’’ approach

to this adaptive process. In passive adaptive manage-

ment, the consequences of management are repeatedly

evaluated but, as the name suggests, no attempt is made

to impose a management action specifically with the

intention of learning and improving management (cf.

Walters 1986, McCarthy and Possingham 2007).

Conservation managers are often faced with multiple

competing hypotheses about the functioning of the

systems they manage (e.g., Johnson et al. 1997).

Ambiguity about the true nature of the system may be

driven by competing beliefs of experts and perpetuated

through inconclusive observations of the system via

monitoring. When faced with a range of competing

management options, some of those options may better

enable managers to reduce uncertainty about the way

the system functions and thus better achieve their

management objective. However, in many instances,

the action that most accelerates learning may not be the

action that initially appears most likely to achieve the

best outcomes. Hence, there is invariably a tension

between implementing the best action given current

knowledge and implementing actions that will allow

rapid learning about system function and improve

future decision making. An emerging discipline in

conservation biology is ‘‘active’’ adaptive management,

which seeks to balance both short-term management

objectives and a desire to learn so as to achieve optimal

long-term management outcomes. In this way, active

adaptive management is a form of management that

places an explicit value on learning that could improve

future management (Holling 1978, Walters and Hilborn

1978, Walters 1986, McCarthy and Possingham 2007).

Active adaptive management is a logical and compel-

ling approach to conservation management. However,

although discussed widely, it has until recently evaded

practical application within decision-making frame-

works (see McCarthy and Possingham 2007, Rout et

al. 2009). One reason for this is that computational

limitations have made it challenging to find optimal

solutions to the trade-off between gaining knowledge

and implementing management in complex ecological

systems. Application of active adaptive management has

generally focused on uncertainty in a single parameter

within a model of system functionality (Walters et al.

1992, Gerber et al. 2005, McCarthy and Possingham

2007, Hauser and Possingham 2008, Rout et al. 2009).

In addition, it may be politically or socially unpalatable

to implement an apparently suboptimal (in the short

term) management option to gain knowledge and make

better future decisions. In this way, the concept of active

adaptive management can appear to be at odds with a

narrow view of ‘‘best practice.’’

In this paper, we advance our understanding of how

to manage ecological systems through active adaptive

management. We focus on investigating how manage-

ment should proceed when there is uncertainty about

how a system functions and there are multiple possible

models of functionality. Should managers invest in

learning early in the management timeframe by imple-

menting several different management actions and thus

hone their understanding of system functions? Should

they instead learn nothing actively, implement one

management action and thus take a chance on their

belief and improve management via passive knowledge

gain?

Decision theory is the mathematical theory about

rational decision making. It involves systematic consid-

eration of the goals of the decision maker, the choices

available, the possible outcomes and the probability of

their occurrence (Maguire 1986, Possingham et al.

2001). Decisions can then be made based on their

likelihood of meeting the stated goals. We establish our

active adaptive management problem within such a

framework, enabling optimal decisions to be made

about which management action to implement when

there is a need to protect a population of a threatened

species and learn about a component of how the system

functions to improve management.

We illustrate an active adaptive management ap-

proach by investigating the management of a disease

affecting populations of the Tasmanian devil,

Sarcophilus harrisii, in Australia. This once common

species has suffered a rapid decline in the last decade due

to the impact of a fatal facial tumor disease (Jones et al.

2007, McCallum et al. 2007, McCallum 2008) (see Plate

1). The situation has demanded an urgent response by

managers in view of the dramatic impact, the novel

status of this disease, and the cultural value of this

species. The novelty of the disease has led to multiple

hypotheses regarding disease dynamics, including un-

certainty about the rate of transmission of the disease

and the length of the period between infection and

appearance of disease symptoms, known as latency.

Thus, while the long-term fundamental objective is to

maintain devil populations, there is also a short-term-

means objective to understand which of these hypoth-

eses is correct so that an appropriate course of

management can be implemented. More generally, this

work provides a protocol for examining the relationship

between learning and management when there are

multiple hypotheses of how a system functions, a feature

that is present in most, if not all, conservation settings.
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METHODS

We outline the elements of an adaptive management

framework for a conservation problem where there are

multiple hypotheses about system function. We define

the potential actions, the alternative population models,

the monitoring design, and the management objectives.

We also describe the analytical methods used to find the

optimal solutions for the case study of the Tasmanian

devil, Sarcophilus harrisii.

Case study

Tasmanian devil facial tumor disease is a recent

conservation threat that has significantly increased the

probability of extinction of the Tasmanian devil in the

wild (Jones et al. 2007, McCallum et al. 2007, McCallum

2008). The disease is an infectious cancer that is

transmitted individual to individual through open

wounds, almost exclusively between adults (McCallum

2008). In situ conservation actions are currently limited

to the removal of infected individuals from a popula-

tion. Removal of diseased individuals is expected to

break transmission by reducing the basic reproductive

rate of the disease in the population. By suppressing

disease prevalence, management aims to give the devil

population a better chance at recovery, that is, to

increase the expected population growth rate to .1.

Thus, we can view the overall aim of management as

maximizing the growth rate of the population over the

management horizon.

Due to the large spatial extent of devil home ranges, it

is only feasible to implement disease suppression in

isolated or semi-isolated subpopulations of the species.

As such, implementation of management actions is

restricted to two areas of mainland Tasmania (n ¼ 2).

We explore the role of adaptive management where only

one site is available for implementation and then extend

it to consider a scenario where management is under-

taken at two sites.

Actions

There are a number of possible management actions

that involve the removal of different classes of individ-

uals from an infected devil subpopulation. These actions

have been proposed by different experts that include

researchers, managers, and experts on wildlife disease

and the Tasmanian devil, and reflect different underly-

ing hypotheses regarding disease latency. We consider

three possible actions: (1) remove no individuals (do

nothing), (2) remove all visibly diseased adults, and (3)

remove all adults from the subpopulation.

Each action can affect the long-term fate of a

subpopulation by changing the size, age, and sex

structure of the population (and thus the reproductive

potential). This in turn influences the prevalence, spread

and persistence of the disease. The effect of each action

on the recovery of a subpopulation is determined by the

subpopulation growth rate. There is uncertainty about

how the subpopulation will respond to these actions and

we express this through three alternative models.

Models

Advocates for different management actions disagree,

in part, because they have different beliefs about how

the system functions. For example, if disease transmis-

sion rates are low and the subpopulation is small,

removal of any animals would be detrimental to the

short-term persistence of the subpopulation, thus

favoring the removal of no animals (action 1). Those

who argue for removing all diseased adults (technically,

those showing signs of disease, action 2), implicitly

believe that transmission rates are high but the latency

period of the disease is short and that few individuals

not showing symptoms of the disease will be infected by

the disease. Thus, removal of animals showing signs of

disease is all that is required to effectively remove the

disease. A long latency period, coupled with high disease

transmission rates by adults, would favor removal of all

adults from the subpopulation (action 3) in an effort to

make sure that no asymptomatic but diseased animals

were left in the subpopulation to continue to transmit

the disease.

The response of the system is measured through the

annual growth rate of the devil subpopulations as a

function of an action aj [for the number of potential

actions J ] under each of the alternative models, i [with

mean predicted growth rate fi(aj)]. We consider m

models of how the system functions such that the

subpopulation response (growth rate) following action

aj at time t given model i is defined as

ksite;tðaj;model iÞ ¼ fiðajÞ þ esite;t

where j¼1, . . . , J; site¼1, . . . , S; t¼1, . . . , T; i¼1, . . . ,
m, and esite,t ; N(0, r2

ij).

We assume the process error, esite,t, is normally

distributed with mean 0 and action- and model-specific

variance, r2
ij, and further, that the sites are independent.

Thus, rij is the standard deviation associated with how

subpopulation growth responds to management action j

given model i is true. Note that the k values are the

actual growth rates of the subpopulations, and thus r2 is

strictly process variance and in this case does not include

observation error.

Having defined a set of models and the expected

subpopulation responses given a particular action and

model, we now set up a process where our belief in each

model can change given the subpopulation response

when an action is implemented.

Monitoring

Let wit be the belief in a model relative to other

considered models such that

Xm

i¼1

wit ¼ 1
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and

wit � 0 for all i; t:

Thus wit is the probability at time t that model i best

represents the system (wit¼Pr(model i ) given the data to

date). As actions are taken and the outcomes of these

actions are observed through monitoring, the plausibil-

ity of each model is reassessed by updating the weights

wit. Here full confidence in a model is indicated when wit

¼ 1, and no confidence when wit ¼ 0.

In each year, monitoring is implemented and an

estimate of the growth rate of each subpopulation, k̂site,t,
is obtained. This information is used to update our

beliefs in each of the alternative models, using Bayes’

theorem:

wi;tþ1ðk̂1;t; k̂2;t; a1; j; a2;kÞ

¼ Prðmodel i j k̂1;t; k̂2;t; a1; j; a2;kÞ

¼ Prðk̂1;t; k̂2;t jmodel i; a1; j; a2;kÞPrðmodel iÞ
Xm

l¼1

Prðk̂1;t; k̂2;t jmodel l; a1; j; a2;kÞPrðmodel lÞ

¼

u
k̂1;t � fiða1; jÞ

rij

0

@

1

Au
k̂2;t � fiða2;kÞ

rik

0

@

1

Awi;t

Xm

l¼1

u
k̂1;t � flða1; jÞ

rlj

0

@

1

Au
k̂2;t � flða2;kÞ

rlk

0

@

1

Awl;t

:

ð1Þ

where k represents the action for site 2 and j for site 1.

The model weights at time t þ 1 depend on the actions

applied to each site and the observed subpopulation

growth rates at time t in each site. To the extent that the

observed growth rate, k̂site,t, is an estimate of the realized

growth rate, ksite,t, the variance terms in Eq. 1 should

include both the process variance and the observation

variance. We assumed that observation error is negligi-

ble, so the variance term includes only the process

variance. We comment on this assumption in the

Discussion.

Objective

We considered an objective that focuses on manage-

ment performance by seeking the greatest long-term

growth of the subpopulation(s). That is, we seek to

maximize the geometric mean annual growth rate at

each site over the time horizon, T. We can convert this

from a product to a sum by taking the logarithm. This is

equivalent to maximizing

X2

site¼1

XT�1

t¼0

ln ksite;t: ð2Þ

Specifically, for the Tasmanian devil case study our

objective is to maximize the net expected growth in the

subpopulation/s over the next 20 years (T ¼ 20).

We use stochastic dynamic programming (SDP) to

determine the optimal strategies for managing

Tasmanian devil facial tumor disease to maximize

expected population growth across sites, taking into

account the process and value of learning about disease

dynamics. This method is applicable to management

scenarios where a set of sequential decisions must be

made and the underlying system dynamics are

Markovian (Bellman 1957, Mangel and Clark 1988,

Lubow 1996, McCarthy et al. 2001). Stochastic dynamic

programming determines the management action to

apply to each site, depending on the objective, time, and

the current state of the system. In our problem, the state

variable is an information state or belief in each model,

wi,t (see Williams 1996). A set of recursive equations are

set up to calculate the expected value of the objective

function from one time step to the next, stepping

backward from the final outcome at the terminal time T.

For each time step, all possible decisions are evaluated

for every possible combination of a discretized set of

model weights, w
~ t ¼ w1;t;w2;t; . . . ; wm;t

� �
. Thus, the

SDP depends on defining probabilities of transition

from one information state to another and the value of

being in that state. These transition probabilities are

calculated based on information obtained at each time

step using Bayes’ theorem (see Eq. 1).

We use V*(wt, t) to denote the expected value of

applying the optimal management strategy from time t

to the terminal time T. The value function V*(wt, t) is a

cumulative sum of the log of the expected annual

subpopulation growth rate at each site (see Eq. 2), and

there is no reward received at the terminal time T, so

V�ðwT ; TÞ ¼ 0 for all wT :

Over other time steps t¼ 0, 1, 2, . . . , T� 1 the optimal

actions a1,j, a2,k to apply at each site satisfy

V�ðwt; tÞ ¼ max
j;k¼1;:::; J

Xm

i¼1

wi;t

Z

k̂1;t

Z

k̂2;t

�
ln k̂1;t þ ln k̂2;t

þ V�
�

wtþ1ðk̂1;t; k̂2;t; a1; j; a2;kÞ; t þ 1
��

3 u
k̂1;t � fiðasite; jÞ

rij

 !

3 u
k̂2;t � fiðasite;kÞ

rik

 !
dk̂1;tdk̂2;t:

We use a weighted sum of future returns over the

plausible models of disease dynamics (i ¼ 1, 2, . . . , m),

and over a discretized set of plausible subpopulation

growth rates, k̂1,t and k̂2,t, that we could observe at the

two sites in the next time step after taking our action.

The updated model weighting wtþ1 comes from Eq. 1,
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and it is this updating process that ensures our

management is adaptive in nature.

As an approximation to the dynamic problem, and to

help us better understand the dynamic solutions, we also

performed a traditional one-time-step decision analysis,

which does not provide learning benefits. That is, we

calculated the expected value in the face of uncertainty

by finding

exp max
a

Ei½ln fiðaÞ�
n o

where the expectation is taken over the models, using the

initial model weights w0. We also calculated the amount

by which the expected growth rate could be increased by

resolving model uncertainty before taking action, known

as the expected value of perfect information:

exp Ei½max
a

ln fiðaÞ�
n o

� exp max
a

Ei½ln fiðaÞ�
n o

:

Parameters: Tasmanian devil case study

Information on annual population growth rates for

Tasmanian devils was elicited from a small group of

experts (S. Lachish, H. McCallum, M. Jones, and N.

Beeton, personal communication) to parameterize the

three candidate models. The group was given the set of

action/model combinations as in Table 1 and asked, as a

group, to assign an annual subpopulation growth rate to

each combination of three possible management actions,

varying in severity in their direct impact on the

subpopulation through removal of individuals, and

three alternative models of how experts believe the

disease may behave within the subpopulations (see

Table 1). The severity of the action in terms of its direct

impact on subpopulation growth was therefore assessed

based on the component of individuals removed from

the subpopulation under this action. The values assigned

to each action/model combination were bounded by

current estimates of subpopulation growth rates in both

a healthy population (k ’ 1.2; Lachish et al. [2007]) and

a diseased population that is left unmanaged (k ’ 0.9;

Lachish et al. [2007]). The standard deviation associated

with each model was estimated as 0.1 (H. McCallum,

personal communication). We examined the impact of the

magnitude of the variability in parameter estimates

assumed for our models by also looking at the optimal

decisions under a standard deviation of 0.5.

The SDP was run over a 20-year time horizon (T¼20)

with both one and two sites in which management could

be implemented. The possible values for observed

subpopulation growth rate were set between k̂ ¼ 0 and

k̂ ¼ 2 and discretized into increments of 0.05. Model

weights were discretized into increments of 0.01.

Simulations of change in belief and subpopulation size

To assess the change in belief in each model and the

potential trajectory of the subpopulations over the

management horizon, we simulated the implementation

of the optimal strategy from the SDP. Simulations were

run from realistic starting states for the Tasmanian devil

case study for both initial subpopulation size (N0 ¼ 70

individuals; Lachish et al. [2007]) and for the current

belief in the three candidate models (w1¼ 0.01, w2¼ 0.6,

and w3 ¼ 0.39). Simulations were run for a single

subpopulation system and a two subpopulation system,

and for each of these subpopulation scenarios simula-

tions were repeated for each model being set as the true

model of how the system functioned.

At each time step, the optimal action from the SDP

was implemented in the subpopulation(s), given the

current model weights (w1, w2, w3). Realized growth

rates (k̂1,t and k̂2,t) were drawn from the normal

distribution with the mean given by the underlying true

model and last action taken, and a standard deviation of

0.1. Based on these observed growth rates, the belief in

each model was updated using Eq. 1, and the sizes of the

subpopulations were projected using a simple growth

model, where

TABLE 1. Expected population growth rate, fi (aj), of Tasmanian devil, Sarcophilus harrisii, populations based on expert opinion,
under three different models of facial tumor disease dynamics, for each of three control actions (do nothing, remove diseased
individuals, and remove all adults).

Variable

Expected population growth rate, fi (aj)

Disease dynamic

Model mean
Model i ¼ 1, disease
will not progress

Model i ¼ 2,
short latency

Model i ¼ 3,
long latency

Control action

Action j ¼ 1, remove no individuals 1.20 0.90 0.90 0.903
Action j ¼ 2, cull all diseased 1.15 1.05 0.95 1.012
Action j ¼ 3, cull all adults 1.01 1.01 1.01 1.010

Model weights (current/initial) 0.01 0.39 0.60 na
Best action (growth rate) 1.20 1.05 1.01 1.036

Notes: Each model favors one potential action (favored value in boldface). Also shown are the current model weights for the
three models and the expected growth rate in the face of model uncertainty for each action. The growth rate under the ‘‘best action’’
is achieved by knowing the model before taking action. The expected value of perfect information is the difference between the
expected growth rate under certainty (1.036) and the highest expected growth rate in the face of uncertainty (1.012). All means are
weighted geometric means.
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Ntþ1 ¼
XS

site¼1

ksite;tNsite;t:

The process of implementing actions from the SDP,

obtaining observations of subpopulation growth rates

and updating our belief in each model and the overall

population size across sites continued for the full 20-year

time horizon and iterated 10 000 times. The mean belief

in each model, the mean population size across sites, and

the proportion of actions implemented in each year were

recorded.

RESULTS

The optimal strategies are presented as ternary plots,

with the optimal action as the response, and the axes our

belief in each of the three alternative models (belief in

model 1, w1; belief in model 2, w2; and belief in model 3,

w3) (Hill and Lewicki 2005). Fig. 1a illustrates how such

plots are interpreted. The corners of the plot represent

the regions in which managers have high belief in one

model and low belief in both other models (e.g., at the

top of the triangle, belief in model 3, w3, is high, and

beliefs in model 1, w1, and 2, w2, are low), while the

center of the plot represents an equal belief in all three

models (w1 ¼ w2 ¼ w3). The horizontal reference lines

(gray lines) represent the degree of belief in model 3,

while the reference lines parallel to the other sides of the

triangle represent the degree of belief in models 1 (red

lines) and 2 (black lines).

The static one-step solution to this problem represents

the recommended action in the face of uncertainty and is

a function of the initial model weights (Fig. 1b). The

solution is equivalent to a classical decision analysis that

presents the action with the highest expected growth rate

across all models (see Table 1). The current initial model

weights (w1 ¼ 0.01, w2 ¼ 0.60, and w3 ¼ 0.39) for the

Tasmanian devil case study favor action 2 (shown with

the blue circle in Fig. 1b; see Table 1), an action also

favored over a large range of model weights. If the initial

belief in model 3 was increased (w3 increased), action 3

would be favored. Action 1 (do nothing) is favored only

when there is a high degree of belief in model 1, and a

low belief in model 2. Such a classical decision analysis

does not allow for the opportunity to learn through

time; however, we can calculate the expected value of

information: the amount by which the expected growth

rate could be increased by resolving model uncertainty

before taking action. The expected value of information

is 0.024, that is, the expected growth rate could increase

from 1.012 to 1.036 if perfect information could be

acquired (see Table 1). As with most problems, not all

the potential actions are equally informative. Here if

action 1 (no treatment) were taken and there was no

process or observation error, model 1 could be quickly

distinguished from models 2 and 3, but models 2 and 3

could not be distinguished, as they predict the same

growth rate under action 1. Action 2 (cull all diseased

animals) is the most informative, as all three models

predict a different response while action 3 (cull all

adults) is not informative at all, as all three models

predict the same response.

The optimal active adaptive management strategy is

driven by the degree of belief in each model being the

true model of our system, the benefit arising from each

action under each model, and the number of sites

available to implement an active adaptive strategy (Figs.

FIG. 1. (a) Diagram of a ternary plot showing how the three
coordinates are interpreted in the case of facial tumor disease in
the Tasmanian devil, Sarcophilus harrisii. Here the axes are the
beliefs in each of the three models: model 1, w1, that the disease
will not progress; model 2, w2, that the disease has a short
latency period; and model 3, w3, that the disease has a long
latency period. The solid blue circle represents the point at
which our belief in each model is equal (w1 ¼ w2 ¼ w3). (b)
Optimal strategy for one time step in the face of uncertainty.
The belief plot is divided into three regions, each of which
corresponds to an optimal action: (1) remove no individuals (do
nothing), (2) remove all visibly diseased adults, and (3) remove
all adults from the subpopulation. The initial belief state is
shown with a solid blue circle; the optimal strategy is action 2
(cull all diseased individuals).
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2–6). When management can only be implemented in

one area, the optimal strategy is a function of the model

weights and the time remaining to manage (Fig. 2). At t

¼ 20, when no additional time remains to manage the

population, the optimal strategy (Fig. 2d) is identical to

the one derived from a static analysis (Fig. 1b). Here

learning holds no benefit and the best actions are

determined by the expected growth rate in the face of

uncertainty, which is a function of our belief in each

model. As the time remaining to manage increases, so

too does the time available to accrue the benefits of

knowledge gain and the value of learning. Even with just

a few years remaining to learn (t ¼ 15), the model

weights over which action 3 is optimal decreases (recall

that action 3 produces no learning), and the model

weights over which actions 1 and 2 are optimal increase

(Fig. 2c). This pattern becomes more pronounced as the

time to manage increases (Fig. 2a, b). At t¼ 1, action 2

(the most informative action) is chosen over much of the

belief space, action 3 is chosen only when there is a very

high initial belief in model 3, but action 1 shows a

significant probing region, especially when model 1 is

likely but model 2 is not (Fig. 2a). For the initial model

beliefs identified for the Tasmanian devil case study, the

optimal action at t ¼ 1 is action 2.

Given a low starting belief in model 1 (w1¼ 0.01) and

a slightly higher belief in model 2 (w2¼ 0.6) than model

3 (w3¼ 0.39), learning rate depended on which model of

the system was reality and how informative the action

associated with that model was (Fig. 3), as well as the

FIG. 2. Optimal active adaptive strategy in one site, given beliefs in each of three models (see Fig. 1) at (a) year 1, (b) year 10, (c)
year 15, and (d) year 20 of a 20-year time horizon. Results in this plot are based on elicited judgments about mean population
growth rate for Tasmanian devils (see Table 1) and a standard deviation of 0.1.
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magnitude of the observation error (results not shown).

If the disease had no impact (model 1 true) then it took

;13 years to learn with 70% certainty (w1¼0.7; Fig. 3a).

Initially, diseased individuals were removed from the

population with a steady increase in the frequency with

which doing nothing (action 1) was implemented. In this

circumstance, model 3 was eliminated from consider-

ation as a plausible model relatively quickly, but it took

much longer to distinguish model 1 from model 2; in the

interim, action 2, the more informative action, was

favored. If in reality the disease had a short period of

latency (model 2), then attaining a belief of 70% in this

model took 3 years (Fig. 3b), with action 2 being

implemented in three quarters of the iterations and

action 3 being optimal in all others. In those iterations in

which action 3 was favored, no further learning

occurred; as a result, the mean model weight stabilized

at almost 80% (w2 ¼ 0.79). A similar rate of learning

occurred if the disease had a long latency (model 3), with

action 2 being implemented initially but then the action

to remove all adults (action 3) being optimal after about

six years of management (Fig. 3c). Once it was clear that

action 3 was favored, no further learning occurred and

the model weights stabilized. Population size increased

dramatically when the disease was not impacting the

population (Fig. 3a). If the disease had a short latency

and mainly diseased individuals were being removed,

then the population size steadily increased (Fig. 3b). On

the other hand if the disease had a long latency and all

adults were being removed the population remained

relatively stable at the initial population size (Fig. 3c).

Many threatened species persist in a small number of

subpopulations (Harrison and Bruna 1999), and thus

adaptive management can feasibly be implemented in

more than one site. For Tasmanian devil recovery,

adaptive management can be implemented in two

subpopulations. In the first few years, when there is

the potential for learning, we see a similar result to that

of the one-population problem where it is optimal to do

nothing in both sites, over a wide range of beliefs that

the disease will not progress (model 1; Fig. 4a). Likewise,

if managers have strong belief in short latency (model 2)

or long latency (model 3) being the best representation

of the system, they should implement the action that

gives the largest growth rate for that model (action 2 or

3, respectively). However, having two sites in which to

implement management alters how one should act under

the specific circumstances in which, previously, one

would choose to switch from one action to another when

only one site was available for management (see Fig. 2).

When this is the case under the two population problem,

managers should implement a mixed strategy that is a

combination of the bordering action in either site. When

there is no time remaining to implement management,

and thus no future benefit from learning, our results

mirror that for single-site management (Figs. 1b and 2d)

and managers should implement the same action across

both areas (Fig. 4d). The benefits of implementing a

mixed strategy decrease not only with the time remaining

to implement management (Figs. 2 and 4) but also with

an increase in the process variance (from 0.1 to 0.5)

under each model/action combination (Fig. 5).

Having two subpopulations to manage enables

managers to learn more rapidly than with one site

(Fig. 6). To be 70% sure that there is no impact of the

disease (model 1) took only about seven years of

FIG. 3. Mean belief in each model (white, gray, and black
shaded areas) and mean population size (dashed lines) plotted
against time, as the optimal strategy for one population is
implemented and observations are attained, given that (a)
model 1 (w1), (b) model 2 (w2), or (c) model 3 (w3) is the true
model of the system. The initial population size is set to 70
individuals. The mean growth rate is taken from Table 1, and
the standard deviation is set to 0.1. The colored bars beneath
the black and white graph show the frequency with which each
action is implemented through time.
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management (Fig. 6a) with the optimal action shifting

rapidly from removing diseased individual from both

sites (action 2) to doing nothing in either (action 1). If in

reality the disease had a short period of latency (model

2), then learning occurred rapidly with 70% certainty

occurring in two years but reaching a maximum belief in

this model of 88% within 11 years of management (Fig.

6b). A similar rate of learning occurred if the disease had

a long latency (model 3) reaching 70% belief in model 3

in three years. Action 2 was optimal in both sites initially

but then the action to remove all adults (action 3)

quickly became the best strategy (Fig. 6c). A similar

pattern in the change in overall population size was

observed for two subpopulations as for one subpopula-

tion managed in isolation (see Figs. 3 and 6). The overall

population size was higher on average when model 1 was

the true model of the system and no individuals were

removed (Fig. 6a) and were significantly lower if all

adults were being removed as the disease had a long

latency (Fig. 6c). The mean overall subpopulation size

was always double that for when one subpopulation was

being considered.

FIG. 4. Optimal active adaptive strategy in each of two populations, given belief in each of three models (see Fig. 1) at (a) year
1, (b) year 10, (c) year 15, and (d) year 20 of a 20-year time horizon. Results in this plot are based on elicited judgments about mean
population growth rate for Tasmanian devils (see Table 1) and a standard deviation of 0.1.
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DISCUSSION

Uncertainty about how ecological systems function

makes management decisions difficult (Peterson et al.

1997, Drechsler et al. 1998, Shea and Possingham 2000,

Regan et al. 2003). Managers must often address

multiple competing hypotheses about how the system

they are trying to manage actually functions. If there

exists substantial uncertainty about the veracity of

competing hypotheses and, therefore, the best course

of action, it is useful to see whether learning can help to

achieve overall conservation objectives. This may lead

managers to consider actions that are nominally

suboptimal based on the model with the highest initial

credibility. In the absence of ‘‘certainty,’’ learning

strategies can be incorporated explicitly within the

decision-making process. This active adaptive manage-

ment approach seeks to balance both our short-term

management objectives and our desire to learn to

achieve optimal long-term management outcomes.

While some highly credible adaptive management

programs have shown how to reduce model uncertainty

and improve management outcomes (Johnson et al.

1997, Nichols and Williams 2006), we provide the first

example of using active adaptive management to reduce

model uncertainty for threatened species management,

and one of very few conservation applications (see Rout

et al. 2009).

In conservation management problems, feasible ac-

tions often have differing benefits to the threatened

population and offer different potential in terms of

learning. In our case study, benefits to the Tasmanian

devil population are measured in terms of the geometric

mean growth rate and different abilities to inform future

management from actions based on removing individ-

uals from the populations. Culling diseased animals

(action 2) is both the best action to take in the face of

uncertainty, and the most informative action; it is thus

no surprise that this is the best action to implement over

a large range of beliefs in the three models of disease

behavior. Indeed, as the time remaining to manage

increases, we are even more likely to implement this

action as the short-term benefits of removing all adults

FIG. 5. Optimal active adaptive strategy in each of two
populations, given belief in each of three models in the first year
of management, when the standard deviation of the observed
growth rates is high (rij ¼ 0.5). Compare to Fig. 4a; the same
color key as for Fig. 4 applies here.

FIG. 6. Mean belief in each model (white, gray, and black
shaded areas) and mean total population size (both subpopu-
lations, shown by the dashed line) plotted against time, as the
optimal strategy for two populations is implemented and
observations are attained, given that (a) model 1, (b) model 2,
or (c) model 3 is the true model of the system. The initial
population size in each subpopulation is set to 70 individuals
(total initial population size 140). The color bar shows the
frequency with which each action is implemented through time.
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(action 3) from the population is offset with the long-

term value of learning the underlying model to improve

future management. This action is even optimal when

there is high confidence that the disease will not

progress, because only the diseased individuals in the

subpopulation would be removed and a growth rate

close to that of a healthy subpopulation would be

maintained ( f1(2) ¼ 1.15).

An important question to address is this: why would

we ever implement no management when we are

concerned about a threatened species? Doing nothing

to directly manage a threatened species (action 1 in our

case study) can seem counterintuitive for a conservation

management program. The answer rests with the ability

of this action to enable us to improve future manage-

ment by helping us choose between competing models.

In the case of the Tasmanian devil, this was important

because of the wide difference in population growth

rates predicted under the different hypotheses (model 1,

f1(1)¼1.20 vs. models 2 and 3, f2(1)¼ f3(1)¼ 0.90). Thus,

if there a reasonable belief that the disease will not

progress (say, w1 . 0.2), and particularly if there is low

belief that the disease has a short latency (model 2) then

it is worth doing nothing to quickly determine whether

model 1 is the best description of the system. It is worth

noting that the value of doing nothing as a learning

strategy decreases as the process variance of the model

increases (e.g., Fig. 5). With high process variance,

model 1 cannot be quickly discriminated from the other

two models, and thus it is better to implement the action

that will give not only the biggest benefit in the face of

uncertainty (action 2) but also be the most informative

for distinguishing between models.

Many threatened species now only persist in a small

number of relatively isolated subpopulations (Harrison

and Bruna 1999) and numerous management programs

worldwide distribute resources between subpopulations

in an attempt to ensure the persistence of threatened

species (e.g., Sumatran tiger, Panthera tigris sumatrae

[Linkie et al. 2006]; Gunnison’s Sage Grouse,

Centrocerus minimus [Oyler-McCance et al. 2001]; the

golden lion tamarin, Leontopithecus rosalia [Pinto and

Rylands 1997]; Caribbean staghorn coral, Acropora

cervicornis [Vollmer and Palumbi 2007]; and Japanese

woodland primula, Primula sieboldii [Washitani et al.

2005]). Predictably, the number of subpopulations or

areas available to implement management actions

affects how learning can take place. If there are multiple

subpopulations to manage and managers are unsure

which hypothesis (or system model) best fits reality, then

they can implement different strategies in different areas.

The benefit from implementing a mixed strategy could

be twofold. In the Tasmanian devil case study, by

implementing the two actions that maximize subpopu-

lation growth under two of the competing models,

managers can guard against the potential loss from

acting solely on the ‘‘wrong’’ model. This could be

considered the conservation equivalent of hedging one’s

bets, in that potentially large losses are buffered at the

cost of moderately reducing the maximum overall

population growth (for both subpopulations).

However, there can be more to a mixed strategy than

hedging our management investments; indeed, imple-

menting two different actions can also accelerate

learning, by simultaneously testing two hypotheses.

In deriving this example of active adaptive manage-

ment, we have made a number of simplifying assump-

tions that allowed us to focus on the central dynamics of

the problem. The question is this: are these assumptions

undermining the inference from the case study? First, as

an objective, we used the geometric mean growth rate

over time as a proxy for the likelihood of persistence.

Such a substitution is common to threatened species

management (Caswell 2001, Baxter et al. 2008). In

contrast to other objectives, such as maximizing

persistence, maximizing growth by incorporating learn-

ing may not guarantee the persistence of the species in

the system. Further, using growth as a proxy for

persistence or extinction may encourage actions and

population responses that are risky or socially unac-

ceptable in the system we are trying to manage (e.g., a

string of low growth rates, leading to a very small

population before a sequence of high growth rates

leading to recovery). Using extinction risk or population

size as an objective, instead of growth rate, might lead to

strategies that avoid actions that risk low growth rates

(like action 1). In doing so these alternative objectives

may value learning differently, possibly avoiding the

most informative actions and slowing the rate of

learning. A key consideration is how quickly learning

is expected to occur. If learning is expected to occur

quickly, before extinction risk accumulates, then the

objective focusing on growth rate will be a good proxy

for extinction risk. If, on the other hand, learning is

expected to accrue slowly relative to the risk of

extinction, then we may inadvertently allow extirpation

of the species in the process of learning about the

problem.

We assumed that the process error on the realized

growth rates was normally distributed; however, there

are alternative distributions that could be considered.

Perhaps the best alternate candidate is the log-normal

distribution that would confine the growth rates to

positive values and increase the likelihood of low

realized growth rates (right-skewed distribution). This

difference, however, is not likely to have a major effect

on the optimal strategies as the magnitudes of the

realized growth rates are due to process variance, which

is not under the control of the managers. A more

important consequence of the distribution of the realized

growth rates concerns the risk of significant decline. The

right skew of a log-normal distribution will produce a

small left tail, meaning a lower risk of population decline

than for a normal distribution; in such a case, the use of

growth rate as a proxy objective for extinction risk

might be even more safely assumed.
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In assessing how active adaptive management might

apply in more than one area, we have assumed that the

two subpopulations being managed have identical

dynamics; hence the best model of the system is valid

in both areas. If the subpopulations did not have the

same dynamics, then information gained via manage-

ment in these areas could be contradictory and our

ability to understand the overall system, improve

management, and thus better achieve our conservation

objectives, would be diminished. If there is a precon-

ceived notion that subpopulations in different areas may

have different dynamics, for example one subpopulation

of the Tasmanian devil has short disease latency while

the other long, then a more sophisticated model of

learning would be required. Here the optimal strategy

for adapting management could be based on implemen-

tation of a one-subpopulation strategy independently in

each area to enable improved management in each

subpopulation.

The Tasmanian devil is a highly valued and iconic

species in Australia. There has been a significant

amount of funding allocated to saving the species

from extinction (Government of Tasmania 2006,

Commonwealth of Australia 2008). In this paper, we

have assumed not only that there is enough funding to

implement the actions proposed, but that the monetary

cost of implementing all these management actions is

equal. In reality this is not the case for most threatened

species management programs; some actions will cost

more than others. For the Tasmanian devil, doing

nothing in an area, in terms of monetary investment,

costs us nothing beyond the monitoring effort, while

removing diseased individuals or all adults from a

subpopulation will require significant and varied invest-

ment in staff time and training, equipment, and

potentially a public relations campaign to deal with

the public response to euthanizing a native animal,

especially if that animal has no visible symptoms (action

3). The difference in these costs will determine how

much of a given action can be implemented within a

fixed budget. This may, in turn, influence the choice of

management strategy (Chadès et al. 2008). For simplic-

ity, we assume that the cost of monitoring is negligible

(or equal across management options), a fact that may

be true in some conservation scenarios (e.g., assessing

revegetation density; McCarthy and Possingham 2007),

but is often far from reality (Field et al. 2004, Hauser et

al. 2006). Indeed assessing subpopulation growth rates

can require a long-term, intensive, and costly monitoring

program.

We also assumed that our monitoring could tell us

current subpopulation growth exactly. In reality, detect-

ing population change of even a common species is

difficult and the precision of the estimates obtained

varies with the amount of resources invested. For the

Tasmanian devil, significant resources are invested in

monitoring, particularly the two subpopulations in

question, so the observation error is likely to be

dominated by the process error. The more general

application does require consideration of how process

and observation error both play a role in determining

the optimal strategy. The model described in this paper

could be extended to incorporate partial observability of

the system and even to identify the optimal investment

in monitoring (Chadès et al. 2008), but such an

extension is beyond the scope of the current work.

Incorporating imperfect observation of the system and

the cost of implementing monitoring could significantly

alter the benefits of learning and thus an active adaptive

management strategy.

Most management programs do not explicitly record

and incorporate failures or observations that disagree

with a preconceived notion of system function (see

Armstrong et al. 2007). In the framework we provide,

our certainty in each model of system function is

explicitly incorporated, such that all potential models

of system function are evaluated in deciding how best to

manage. Without such a framework, would we ever

consider the notion that doing nothing to manage a

threatened species could actually provide the best future

outcome? The reality is that rarely would this strategy be

considered due to the perception that doing nothing

PLATE 1. (Left) Tasmanian devil Sarcophilus harrisii without Tasmanian devil facial tumor disease and (right) one with the
disease. Photo credits: right, M. E. Jones; left, Rodrigo Hamede.
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means failing to act. However, our work shows that

despite the risk from leaving our system unmanaged,

doing nothing can be the best action if it provides both

significant learning potential (our current belief is

uncertain) and/or a strong benefit (belief in model 1 is

warranted: e.g., the facial tumor disease will not

progress; see Fig. 2c and Table 1). This work provides

a case study of how active adaptive management can be

utilized to make difficult decisions in a transparent and

justifiable manner. Further it reinforces the role of active

adaptive management in distinguishing among compet-

ing ideas about how an ecological system functions and

how best to manage it. Active adaptive management has

been hailed as the way forward for effective conserva-

tion management, and indeed for managing our

environment in a changing world (Peterson et al.

1997). We hope this work will contribute to wider

adoption of the useful but difficult concept of active

adaptive management.
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