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Abstract. Research on the allocation of resources to manage threatened species typically
assumes that the state of the system is completely observable; for example whether a species is
present or not. The majority of this research has converged on modeling problems as Markov
decision processes (MDP), which give an optimal strategy driven by the current state of the
system being managed. However, the presence of threatened species in an area can be
uncertain. Typically, resource allocation among multiple conservation areas has been based on
the biggest expected benefit (return on investment) but fails to incorporate the risk of
imperfect detection. We provide the first decision-making framework for confronting the
trade-off between information and return on investment, and we illustrate the approach for
populations of the Sumatran tiger (Panthera tigris sumatrae) in Kerinci Seblat National Park.
The problem is posed as a partially observable Markov decision process (POMDP), which
extends MDP to incorporate incomplete detection and allows decisions based on our
confidence in particular states. POMDP has previously been used for making optimal
management decisions for a single population of a threatened species. We extend this work by
investigating two populations, enabling us to explore the importance of variation in expected
return on investment between populations on how we should act. We compare the
performance of optimal strategies derived assuming complete (MDP) and incomplete
(POMDP) observability. We find that uncertainty about the presence of a species affects
how we should act. Further, we show that assuming full knowledge of a species presence will
deliver poorer strategic outcomes than if uncertainty about a species status is explicitly
considered. MDP solutions perform up to 90% worse than the POMDP for highly cryptic
species, and they only converge in performance when we are certain of observing the species
during management: an unlikely scenario for many threatened species. This study illustrates
an approach to allocating limited resources to threatened species where the conservation status
of the species in different areas is uncertain. The results highlight the importance of including
partial observability in future models of optimal species management when the species of
concern is cryptic in nature.

Key words: decision theory; detectability; partially observable Markov decision process; poaching;
return on investment; Sumatran tiger; surveying; threatened species management.

INTRODUCTION

The enormity of environmental issues worldwide

means that monetary investment in conservation man-

agement is distributed sparsely. Resources allocated to

individual regions or conservation programs are limited

(James et al. 1999). Often managers are making

decisions about which areas to manage with limited

funding. With such finite resources and an urgency to

implement conservation strategies, managers need

quantitative frameworks to aid decision making. These

frameworks must explicitly incorporate trade-offs be-

tween the costs and benefits of management options

allowing resources to be allocated to achieve conserva-

tion objectives efficiently and transparently (Possingham

et al. 2001, Murdoch et al. 2007). In the world of finance

such allocations are achieved using a measure of

enterprise known as ‘‘return on investment’’ (Bodie et

al. 2004). In conservation, the concept of return on

investment has become a focus of theoretical conserva-
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tion research (O’Connor et al. 2003, Wilson et al. 2006,

Murdoch et al. 2007, Wilson et al. 2007) and is

becoming a useful tool for allocating funds between

actions or areas to get the best return from our

conservation dollar (e.g., New Zealand Department of

Conservation [Joseph et al. 2009], The Nature

Conservancy [E. Game. personal communication]). Such

approaches, however, are myopic and the dynamic

nature of conservation problems has led to a flurry of

research on how to temporally allocate resources

between actions and areas (e.g., Johnson et al. 1997,

Milner-Gulland 1997, McCarthy et al. 2001, Westphal et

al. 2003, Tenhumberg et al. 2004, Bode and Possingham

2005, Wilson et al. 2006, Drechsler and Watzold 2007,

McDonald-Madden et al. 2008). The majority of this

research has converged on modeling problems as

Markov decision processes (MDP). Indeed, the use of

MDP in the conservation literature increased consider-

ably in the last decade and is becoming an essential tool

in the theoretical conservationists’ toolkit.

Markov decision processes, most often solved using

stochastic dynamic programming (SDP), give an opti-

mal strategy driven by the current state of the system

being managed, for example; the number of extant

populations of a threatened species (McDonald-

Madden et al. 2008), the level of establishment of a

biological control (Shea and Possingham 2000), the

number of individuals in a population of concern

(McCarthy et al. 2001), or even the number of parcels

reserved in an area (Wilson et al. 2006). Most, if not all,

threatened species are cryptic and thus difficult to

observe. The difficulty in observing threatened species

means the states of the populations we are managing are

typically uncertain, a fact that could seriously impair

our conservation decisions. For example, if deciding

between management of multiple areas depends on

whether a threatened species is extant in an area or not,

using an allocation strategy that assumes the presence of

the threatened species is completely observable (e.g.,

MDP), could potentially waste resources by allocating

funds to areas where the threatened species has already

disappeared. The penalty for this error might be reduced

funding to those areas that are important for the species

persistence. Alternatively, resources may not be allocat-

ed to areas where the species remains extant but

unobserved, a result that could be devastating for the

persistence of the species.

Monitoring can enable managers to gain the infor-

mation needed to make state-dependent management

decisions (Nichols and Williams 2006, Chadès et al.

2008). Yet monitoring, as with management, costs

money, and affects the funds available for other

conservation activities, such as further management.

Where funds are limited, the cost of monitoring can

mean a trade-off exists between taking a management

action known to reduce the risk of extinction, versus

gaining information that will hopefully make our

management more efficient, and our threatened species

even more secure. To make this tradeoff between

information gain and direct management when allocat-
ing resources our allocation approach must incorporate

the value of information in making these decisions (see
Howard 1966, Polasky and Solow 2001, Chadès et al.

2008). Allocation approaches that assume we have
perfect information on the state of the system (e.g.,
MDP), do not explicitly value further information

gained through monitoring, and therefore cannot be
used to evaluate tradeoffs between information gain and

immediate management action. The trade-off between
information gain and direct management is mathemat-

ically and computationally difficult to evaluate and to
date only relatively simple problems have been explored

(Johnson et al. 1997, Gerber et al. 2005, Regan et al.
2006, McCarthy and Possingham 2007, Chadès et al.

2008, Rout et al. 2009). Importantly, incorporating this
trade-off into resource allocation requires that we

undertake an adaptive approach to decision making in
light of our uncertainties about the state of the system

being managed (see Nichols and Williams 2006).
In this paper, we provide the first adaptive framework

for dynamically allocating resources to either manage-
ment or monitoring across more than one area

important to the persistence of a threatened species.
To do this we use a relatively new approach to
conservation science, a partially observable Markov

decision process (POMDP). POMDP allows us to
determine the best action to implement (monitoring or

management), based on uncertain information about the
presence of the species in different areas. Chadès et al.

(2008) describe the use of POMDP in making optimal
management decisions for a single population of a

threatened species. Here we extend that work to a more
realistic scenario, the management of two populations of

the Sumatran tiger (Panthera tigris sumatrae) in Kerinci
Seblat National Park, Indonesia. Demonstrating the use

of POMDP in two populations allows us to compare the
outcomes from this adaptive framework (POMDP), to

decisions that rely on complete knowledge of the state of
each population (MDP). We explore how assumptions

about uncertainty in our knowledge of the system state,
affects whether we survey, manage, or do nothing in
these areas, and how differences in the level of

uncertainty drive the selection of different strategies.
We conduct the first comparison of POMDP resource

allocation behavior between systems where the expected
return on investment from management is either the

same for all populations or variable across populations.

METHODS

Problem definition

We consider a cryptic threatened species that exists in

two populations in remnant habitat patches, referred to
as population A and population B. The populations are
isolated from each other, so there is no chance of

recolonization once a population becomes locally
extinct. A program with a fixed budget is in place to
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manage this species. We examine the difference in

management strategies when we model our problem as

an MDP, were it is assumed we know the state of the

system, and when we model our problem as a POMDP,

where the state of the system is uncertain.

Objective

The first step in formulating the conservation resource

allocation problem is to define a quantifiable objective.

Our aim is to find the optimal allocation of resources

given a fixed budget, C, that gives the greatest long term

benefits for the conservation of a cryptic threatened

species. Specifically our objective in both cases is to

maximize the expected number of populations of a

threatened species that remain extant over a 20-year

management horizon (time T ¼ 20).

Actions

In the fully observable MDP one of two actions can

be implemented in each population (1) to manage and

(2) to do nothing. The budget is fixed and is traded off

between both populations thus we explored four

possible overall conservation actions, a, using MDP:

1) manage both population A and population B (MM);

2) manage population A and do nothing in population

B (MN);

3) do nothing in population A and manage population

B (NM); and

4) do nothing in both populations (NN).

System states

The state of the system is based on whether

populations are extant or extinct. Given this, the system

can be characterized by one of four possible states (1)

both populations extant, (2) both populations extinct,

(3) population A extant and population B extinct, and

(4) population A extinct and population B extant. These

states are known as the set of ‘‘real’’ states of the

system, S.

Transition probabilities

The probability of extinction when we manage a

population depends on the action taken in the other

population. That is, if we manage population A and B

then the budget must be split and thus the probability of

extinction in each population will be greater than for a

population that receives all available resources for

management. However, if we were to manage one

population then this would have a lower probability of

extinction while the second population would not be

managed and have a higher risk of extinction. Thus,

there is a clear trade-off between the probability of

extinction of an individual population and our ability to

save both populations given a fixed budget, C.

The stochastic consequences of a reserve-manager’s

actions on the population are represented by transition

probabilities. The transition probabilities represent the

probability distribution of moving from any real state s

in S at time t, to any real state s0 in S at time tþ 1, given

an action a is implemented at time t (P(s0 j s, a)). The
probability of extinction of a managed population, pm, is

less than the probability of extinction when a population

is not managed, p0 ( pm , p0; see Table 1 for summary of

parameters). We assume that recolonization is not

possible and thus extinct populations remain extinct.

Reward function

A reward function is specified based on the real state

of our system at each time step (R(s)). Here we use a

reward function that gives a score of one point for each

population that is not extinct each time step. This

exactly reflects the objective function, which aims to

maximize the expected value of the reward function over

the entire management time horizon.

TABLE 1. Definition of parameters and values of parameters used for the Sumatran tiger case study (Linkie et al. 2006; M. Linkie,
unpublished data).

Parameter Definition Values

T management time horizon 20 years
C budget available to conservation program current, $47 723;

reduced, $31 815
Cs cost of surveying one population $10 235
ds detection probability of species when surveying current, 0.780;

reduced, 0.260
dm detection probability of species when managing current, 0.010;

increased, 0.210
p0 annual probability of extinction in a population when not managing high extinction risk, 0.0880;

low extinction risk, 0.0102
pm annual probability of extinction in a population when managing both current C, 0.00330, 0.00130;

reduced C, 0.0277, 0.00640�
pm annual probability of extinction in a population when managing one current C, 0.0000285, 0.0000115;

reduced C, 0.000340, 0.000137�

Note:Here high extinction risk is equivalent to high return on investment while low extinction risk is equivalent to a lower return
on investment.

� For both current and reduced C, the first value is for high extinction risk, and the second value is for low extinction risk.
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Completely observable Markov decision process

We solve the MDP using a mathematical optimization

method known as stochastic dynamic programming

(Bellman 1957, Mangel and Clark 1988, Lubow 1996,

McCarthy et al. 2001). Stochastic dynamic program-

ming determines the exact optimal strategy depending

on the management objective, time, and the current state

of the system. Stochastic dynamic programming works

by stepping backwards from the terminal time T. For

each time step all possible decisions are evaluated over

all four possible real states. Thus, the optimal strategy

through time maps real states to actions (p: Statest !
Actiont) and is determined by the dynamic program-

ming equations:

V�T ðsÞ ¼ RðsÞ;

and

V�t ðsÞ ¼ RðsÞ þmaxa2Ac
X

s 02S

Vtþ1ðs 0ÞPrðs 0 j s; aÞ

where t ¼ 1, 2, . . . , T�1 represents the management

years, V is the maximum value of the function, R(s) is

the reward function and P(s0 j s, a) is the probability of

transition from real state s to s’ given action a is

implemented in s (Mangel and Clark 1988, Williams

2009). A discounting factor, c, is used during the value

iteration to facilitate reaching a finite sum (the algorithm

converges). The value of c also dictates the relative value

placed on future rewards compared to immediate

rewards, where a discount factor close to one values

the future more than a factor close to zero. We use a

discount rate of 4% (c¼ 0.96) to ensure convergence of

the MDP to an exact solution over the 20 year time

horizon. Over this time horizon such a small discount

rate will not affect the optimal strategy derived only the

time taken to compute the strategy.

Deriving an optimal management strategy incorporating

species’ detectability

To derive an optimal strategy given uncertainty in the

real state of the system, S, we need to incorporate

imperfect detection of the species. We achieve this by

posing the problem as a partially observable Markov

decision process (POMDP) and solving a multi-time-

step scenario using the incremental pruning algorithm

(Cassandra et al. 1997). Our POMDP adds three

elements to the regular MDP: the action to survey; a

set of observations, z (detection or non-detection of the

species in each population, termed presence or absence);

and the probabilities of these observations. Thus the

suite of potential actions is extended to include the

following:

5) survey population A and manage population B

(SM);

6) manage population A and survey population B

(MS); and

7) survey both populations (SS).

The probability of observing the species in a

population given it is present depends on the resources

allocated to that action. This detection probability

equals ds when surveying or dm when managing (where

1 � ds � dm � 0; see Table 1 for summary of

parameters). These probabilities represent the likelihood

of an observation, z, at time tþ 1, given the real state of

the system, s0, at time t þ 1, and the action taken, a, at

time t [Pr(z j a, s0)] (see Table 2 for description of the

relationship between observations and real states).

The optimal action derived using the POMDP

algorithm depends on the history of previous observa-

tions, z, and actions, a, rather than the real state, which

is unobserved. Keeping track of the complete observa-

tion–action history is computationally infeasible; instead

POMDP synthesizes this information into one variable

known as a ‘‘belief state.’’ A belief state, b, is a

probability distribution over all real states capturing

the relative likelihood of being in each of our four real

system states (see Table 3 for example of belief state in

each of four real states given three hypothetical

observation/action histories). The POMDP algorithm

finds an optimal action each year given the current belief

about the real state of the species (extant or extinct) in

each population (see Williams 2009 for further details on

TABLE 2. Relationship between observations and real states using a partially observable Markov
decision process (POMDP) framework in terms of the probability of an observation, z, given the
real state, s, based on detectability, d.

Real states, s

Observations, z

aa ap pa pp

EE 1 0 0 0
EEx 1 – d d 0 0
ExE 1 – d 0 d 0
ExEx (1 – d )2 (1 – d )d d(1 – d ) d2

Notes: The value of d varies depending on the action performed. Within a completely observable
Markov decision process (MDP) framework the relationship assumed 100% detection: that is, if
nothing is observed in both populations than the real state is assumed to be extinct in both areas.
Real states: EE is extinct in both, EEx is extinct in population A and extant in B, ExE is extant in
population A and extinct in B, and ExEx is extant in both. Observations: aa is not observed in both,
ap is not observed in population A and observed in B, pa is observed in population A and not
observed in B, and pp is observed in both.
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POMDP). Thus, the optimal strategy through time

maps belief states to actions (p: Belieft ! Actiont).

In order to apply the optimal solution, decision-

makers first need to determine the probability that the

species is extant in each population. This can be done by

answering two simple questions: when is the last time we

saw the species in each population and how have we

acted in each area since seeing the species? These

answers will provide enough information to compute

the current belief state. For example if it has been a long

time since we have observed the species in an area and

we have implemented a lot of monitoring in that area

than we will have low belief that the species remains

extant in that area. From a starting belief state, b, an

action, a, is selected, leading to an observation z. Using

this information, the previous belief, b, is updated to

give the current belief state [ba
z (s

0) 8s0] (see Fig. 1 for a

diagram of this process). Bayes’ theorem enables us to

update the belief state throughout our management time

horizon for all possible combinations of actions that

could be implemented and the observed states:

ba
z ðs 0Þ ¼

Pðz j a; s 0Þ3
X

s2S

Pðs 0 j s; aÞ3 bðsÞ

Pðz j b; aÞ :

The POMDP algorithm iterates through our decision-

making horizon calculating at each time step, t, the

action, a, that gives the maximum value, V�t (b), based on

the reward function, R(s), the current belief of being in

state s, b(s), the real state transitions, P(s0 j a, s), the

observation probabilities, P(z j a, s0), and the expected

cumulated rewards in the future time step, V�tþ1ðba
z Þ:

V�T ðbÞ ¼
X

s2S

bðsÞRðsÞ 8b

V�t ðbÞ ¼
X

s2S

bðsÞRðsÞ

þmaxa2Ac
X

s2S

X

s02S

X

z2Z

bðsÞPðs 0 j a; sÞ

3 Pðz j a; s 0ÞV�tþ1ðba
z Þ 8b:

As with the MDP to facilitate convergence of the

POMDP algorithm we use a discount rate of 4% (c ¼
0.96). The action with the maximum value at each time

step is the optimal management strategy, p, for a specific

ecological scenario.

Case study: Sumatran tiger

The Sumatran tiger is critically endangered due to

poaching and reduced abundance of prey and habitat

(Kenny et al. 1995, Wikramanayake et al. 1998, Linkie

et al. 2006, Dinerstein et al. 2007). The 36 400-km2

Kerinci Seblat region of west-central Sumatra is

designated as part of a level 1 ‘‘tiger conservation

landscape’’ (Dinerstein et al. 2007) and significant

resources are spent annually to conserve this population.

Linkie et al. (2006) investigated the effect of resources

invested in anti-poaching protection on the probability

of losing the different tiger populations within this

landscape. Two important management strategies for

this species are reducing the level of tiger and prey

poaching by patrolling the population, and assessing its

status through surveying. Currently, about $47 800 is

spent annually on these two actions with approximately

one-fifth of this budget spent on surveying (Cs¼$10 235)

and the remainder on protection measures (Cm; M.

TABLE 3. Belief state for the real state of the system, s, given
three hypothetical scenarios of detection history in each
population and management being implemented in both
populations.

Real states, s

Scenario

1 2 3

EE 0.01 0.02 0.07
EEx 0.05 0.04 0.2
ExE 0.05 0.25 0.2
ExEx 0.89 0.69 0.53

Notes: Scenario 1, species detected in both populations two
years ago; scenario 2, species detected in population A two
years ago but not in population B (detected 10 years ago);
scenario 3, species not detected in either population recently
(detected 10 years ago). Real states: EE is extinct in both, EEx is
extinct in population A and extant in B, ExE is extant in
population A and extinct in B, and ExEx is extant in both.

FIG. 1. Procedure for iteratively applying the optimal strategy and updating the belief that the population is persisting as
implemented in the partially observable Markov decision process.
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Linkie, unpublished data). The budget set here is based

on the cost of implementing patrols in the periphery of

two populations and does not include the ongoing costs

of overheads for this long-term program.

The probabilities of transition between states of the

tiger population were calculated from the probabilities

of extinction (and its complement, the probability of

survival) of each tiger population depending on the

action implemented. In each year the total budget of C is

expended; thus, if we manage one population then this

population has a probability of extinction given an

investment of C, whilst the other has a probability of

extinction given no investment (doing nothing). If we

manage both populations, each population has a

probability of extinction assuming half the budget is

invested in management at each population. When

surveying a population, a cost Cs is incurred, thus there

are C – Cs resources available to manage the second

population. We derived a local extinction probability for

a population given the resources spent on poaching

patrols based on a population viability analysis of this

Sumatran tiger population relating probability of

population extinction over 50 years to the number of

tigers poached from a population annually (Linkie et al.

2006). This model indicates a relatively high probability

of extinction of a population in a 50-year time frame

when no management occurs ( p0¼0.99). To reduce tiger

poaching by 50% requires an investment of $18 744 (M.

Linkie, unpublished data), and this value was used to fit a

logistic function to relate probability of extinction in a

50-year time horizon to dollars invested in management,

P(Cm), where (see Fig. 2a):

PðCmÞ ¼ p0 1� 1

ð18 744=CmÞh þ 1

" #
:

Here h was derived by fitting this logistic curve to data

from the population viability analysis from Linkie et al.

(2006) to maintain a similar change in probability of

extinction given increasing investment as from a

reduction in tigers poached (h ¼ 7). We used the same

logistic curve with a reduced probability of extinction

over a 50-year period without management ( p0¼ 0.4) to

construct a curve relating probability of extinction to

dollars invested in management for a low return on

investment population (see Fig. 2a). From these curves

we interpolate the probability of extinction over 50 years

given a particular action was implemented (e.g., manage

both populations; see Fig. 2a) and derived annual

transition probabilities of a population of Sumatran

tigers, pm, where pm ¼ 1 � [1 � P(Cm)]
1/50.

Observation transitions are calculated based on the

probability of detecting a tiger given they persist in a

population (d ) and the complementary probability of

non-detection given persistence (1 – d ). The transitions

are constructed given the real state of the system, the

observed state of the system and the action implement-

ed. Thus, if both populations persist and we survey in

population A and manage in population B then our

probability of observing a tiger in population A and B

will be the product of the probability of detecting a tiger

given they persist in a population if we survey (ds) and if

we manage (dm; see Table 2). Linkie et al. (2006)

estimated that there is a 50% chance of detecting a tiger

at a survey point, given that it is in the vicinity. Based on

this figure we derived the binomial probability that at

least one tiger would be detected during surveys of 10%
of survey points (where the total number of survey point

is 500) and approximately 30 female tigers remain extant

(ds¼ 0.78; see Fig. 2b). We explore the impact of survey

efficiency, and variation in crypticness of the species

being managed, by assuming a reduction in the chance

of detecting a tiger at a survey point to 10% (ds ¼ 0.26;

see Fig. 2b). We assume that there is almost no chance of

detecting a tiger when anti-poaching patrols are

implemented as we are not actively searching for tigers

in the area (dm¼ 0.01); thus, there is little opportunity to

reduce our uncertainty about the state of a population

unless we survey. By increasing this value we assess how

the optimal management strategy would change if the

species is more likely to be detected during management

(dm ¼ 0.21), for example if surveying could be

implemented simultaneously with management actions

for no extra cost or animals are less cryptic.

A summary of all parameter values for the Sumatran

tiger example is given in Table 1.

Simulations: why incorporate partial observability?

We assess the performance of the optimal strategy

determined by the POMDP and that from the MDP

over a 20-year time horizon using forward simulation.

Performance is based on the percentage of the total

possible reward achieved in that period averaged across

all iterations. We investigate how performance changes

as the detectability of the species during management or

level of cryptsis, dm, increases from 0.01 (low detect-

ability during management, equivalent to Sumatran

tiger) to 1 (completely observable during management).

We investigate this pattern for both the current budget

and the reduced budget, and also when the risk of

extinction in both populations is equal and when they

differ. Simulations were run over 1000 iterations.

RESULTS

The MDP gives an optimal strategy based on the real

states of each population, whether they are extant or

extinct. The optimal strategy from the MDP for whether

to actively manage or simply do nothing in a population

is influenced by the budget available for management

and the differences between populations in terms of

extinction risk and thus return on investment from

management. With the current budget available to

manage the Sumatran tiger the optimal strategy is to

manage the populations that are extant. A reduction in

funding means there is not enough money to effectively

manage both populations and affects only our optimal
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action in the state where both populations are extant.

The optimal strategy in this case is to manage the

population that gives the biggest return on investment.

Using a partially observable approach our decision is

now based on our understanding of the state of each

population and thus the axes represent a manager’s

belief in the persistence of the Sumatran tiger in each

population (Figs. 3–6). When the belief in both

populations approaches one (equivalent to both popu-

lations being extant) or belief in one population

approaches one whilst the other approaches zero

(equivalent to one population being extant and the

other extinct) then the optimal decision from the

POMDP is the same as that derived from the MDP.

The optimal strategy from the POMDP for whether to

actively manage, survey, or simply do nothing in a

population is influenced not only by the budget available

for management and the differences between popula-

tions in terms of return on investment but also

interestingly, by how sure we are that the species persists

in each area and the disparity in these beliefs. The

decisions to survey in both populations or to do nothing

in both populations are never optimal for any combi-

nation of extinction risk or funding explored. In short,

FIG. 2. (a) Assumed relationship between probability of extinction in 50 years of a population and the money invested in
managing a population. Each curve represents an extinction risk/return on investment measure, high or low. The black curve is
derived from probability of extinction data from Linkie et al. (2006) and cost data for the Sumatran tiger (M. Linkie, unpublished
data). The gray dashed lines show the probability of extinction interpolated from these relationships given two populations are
managed. (b) Assumed relationship between detection probability from surveying and the probability of detecting a tiger at one
sample point. This curve is based on the probability that a population of tigers would be detected during surveys when $10 235 is
invested in surveying (M. Linkie, unpublished data) and approximately 30 female tigers remain extant. The gray dashed lines show
the detection probability, ds, given there is a 50% chance of detecting a Sumatran tiger at a survey point (Linkie et al. 2006) and a
10% chance of detecting a Sumatran tiger at a survey point. This reduction represents the impact on detection if a less efficient
survey technique was used or a more cryptic species was being managed.
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neither of these strategies is efficient as some form of

management can always improve the final outcome.

The current budget available to manage two popula-

tions of the Sumatran tiger enables active management

in both populations to be optimal over a wide range of

certainty in the presence of tigers (Fig. 3a). If, however,

there is a large disparity in our belief about the presence

of tigers in both areas, it is no longer optimal to manage

the population in which our belief in the presence of

tigers is low. Under these circumstances we should invest

in gaining information on the presence or absence of

tigers in this population by surveying and updating our

belief in their presence. When our belief in the presence

of tigers in a population is less than 0.5%, it is no longer

worth monitoring in this population. Abandoning a

population at this belief state is optimal regardless of

changes in budget or the potential return on investment

(extinction risk). If the funding available to manage the

Sumatran tiger were cut by a third, the option to

manage both populations, irrespective of our certainty

in the presence of tigers, would reduce the effectiveness

of anti-poaching patrols in each population (Fig. 3b).

Indeed, under a reduced budget both populations

should only be managed if we have seen tigers in both

areas in the last 7 years (bA � 80% and bB � 80%; Fig.

3b). The most efficient strategy under a reduced budget

is to manage the population in which we are more

certain tigers are present, whilst surveying and gaining

information in the other population. If funding is

reduced then we should cease management in one

population when the chance it is extant is less than

10% (bA � 0.1 or bB � 0.1).

Changes in the detection probability when we

monitor, for example, the use of a less effective survey

method or the study of a more cryptic species, affect the

optimal strategy (Fig. 4a). If the probability of detection

during surveying is decreased then the benefits of

surveying are also lower, and the area of the strategy

for which it is optimal to survey in one population is

reduced (Fig. 4a, see Fig. 3b for comparison with high,

ds). Indeed, if the budget is low we would both increase

the optimality of managing both populations and

increase the optimality of doing nothing instead of

surveying (Fig. 4a). When the budget is higher than only

the area over which we manage both populations

increases. There is also a possibility of detecting tigers

while managing, dm, which may increase if surveillance

can be integrated into patrolling or if we are managing a

less cryptic species. When we increase this value, we see a

similar result from the increase in ds, with the belief

space over which it is optimal to survey decreasing and

the belief space over which management of both

population is optimal increasing (Fig. 4b, see Fig. 3b

for comparison with low dm). There is no change in the

optimality of actions that incorporate doing nothing

FIG. 3. The optimal decision for Sumatran tigers in the first year of action (20 years remaining to manage) dependent on our
belief in the presence of tigers in population A, bA, and our belief in the presence of tigers in population B, bB, when (a) both
populations have high probability of extinction (inhabit low quality habitat) and (b) both populations have a high probability of
extinction and budget is reduced by one-third. Detectability, ds¼ 0.78. Key to abbreviations: MN, manage population A and do
nothing in population B; NM, do nothing in population A and manage population B; MM, manage both populations; MS, manage
population A and survey in population B; and SM, survey in population A and manage population B.
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(MN and NM) when the probability of detecting tigers

while managing, dm, is increased.

Return on investment (extinction risk) in a population

can differ for a number of reasons, for example, the

habitat in each population could differ in quality or

populations could have different levels of human

encroachment. A difference in the potential return on

investment in the populations, affects how we should

allocate resources between our tiger populations (Fig.

5). In the population with low extinction risk (return on

investment) the optimal action is to survey when our

belief in the presence of tigers in that population is

below that of the second population which has high risk

of extinction (return on investment) (Fig. 5a; see Table 1

for extinction risk values). Otherwise, when our belief is

higher in the low risk population, we manage this

population as well. We only cease managing the

population at high risk (high return on investment),

and concentrate management in the low risk area, when

our belief in the presence of tigers in the high risk area is

low. With less funding we cannot effectively manage

both populations when we consider the distinction in

extinction risk (Fig. 5b). The optimal decision is to

manage the population in the high risk area if our

certainty in the presence of tigers there is above

approximately 40% and implement no action in the

population at lower risk (with low return on invest-

ment). Even if our initial certainty in the presence of

tigers in this population is less than 40% we still manage

this population, however, we now survey the other

population. Only when our initial belief in the presence

of tigers in the population at low risk of extinction is

markedly higher than that of the high risk area do we

implement management in this low risk population. We

do not, however, stop acting in the high risk population

we merely shift focus from management to surveillance.

The optimal decision is not only influenced by our

belief in the presence of tigers in each population but

also by the time horizon of management and whether or

not a tiger is observed in either population during our

previous actions (Fig. 6). As we progress towards the

final year of management, the benefits of surveying

diminish. Indeed surveying will never be optimal in our

final year irrespective of our belief in the presence of

tigers in either population as information gained cannot

influence management decisions. Not only do the

optimal decisions change each year, but the optimal

action in each population will change depending on our

previous action, and any observations, which influence

the current belief about the presence of tigers. If both

populations are the same and we start with equal

certainty that tigers are present in both areas and we do

FIG. 4. The optimal decision for Sumatran tigers in the first year of action (20 years remaining to manage) dependent on our
belief in the presence of tigers in population A, bA, and our belief in the presence of tigers in population B, bB, (a) when the
probability of detection from surveying is reduced, ds¼0.26, and (b) when the probability of detection when managing in increased,
dm¼0.21. Here both populations have high probability of extinction (high return on investment), and the budget is reduced by one-
third. The arrows show how the optimality of surveying (MS and SM) has reduced given these changes in detection (see Fig. 3b for
comparison). Key to abbreviations: MN, manage population A and do nothing in population B; NM, do nothing in population A
and manage population B; MM, manage both populations; MS, manage population A and survey in population B; and SM, survey
in population A and manage population B.
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not observe tigers in either population for five years, a

likely scenario for many cryptic threatened species, then

our belief in the presence of tigers in both areas declines

evenly and we implement the same actions in both (Fig.

6). If the history of sightings of tigers in both areas is
different, for example we might be 60% sure tigers are in

population B but only 40% sure they are present in

population A, the optimal actions and the changes in

our certainty of the presence of tigers would differ (Fig.

6). In implementing this optimal strategy we affect our

belief in the presence of tigers in each population in the
next management period differently, and as we obtain

no positive observations of tiger presence our beliefs

decline. Thus, in population B where we implement

management our belief in the presence of tigers only

declines marginally while in population A, in which we
survey and see nothing, our certainty in the presence of

tigers declines markedly. In the next year, our actions

will be driven by our new and now different beliefs in the

presence of tigers in each population and as our belief in

the presence of tigers at population B is markedly higher
we will manage only this population.

In general ignoring the cryptic nature of the species

and managing assuming the problem can be repeated as

an MDP can significantly diminish our conservation

outcomes. The performance of management based on

the optimal solutions from the POMDP depends much

more on the budget available to manage the Sumatran

tiger but very little of the population detectability (Fig.

7a, b). When the budget is low the POMDP reaches an

average performance level of 75–80% of the maximum

possible reward over 20 years (Fig. 7a), but reaches

almost 100% performance when the budget is increased
(Fig. 7b). Here 100% performance means that both

populations remain extant over the 20 year management

horizon. The optimal decision from the MDP is to

manage all extant population/s irrespective of return on

investment or the budgets we explored, that is if no
tigers are observed in a year than the optimal action is

not to manage in both areas. As the detectability of the

species during management increases so too does the

performance of management based on the optimal

solution from the MDP (Fig. 7a, b). However, this
increase in performance is marginal until detectability is

high. Indeed, the MDP solution performs up to 90%
worse than the POMDP for highly cryptic species (low

detectability during management; Fig. 7b) and even

when the observability reaches 90%, the performance of

the MDP solution is at least 40% lower than the
performance of the POMDP solution (Fig. 7a). Only

when there is a 100% chance of observing the species

when we manage the population does the performance

of the MDP and the POMDP converge. The results for

the performance of the POMDP compared to the MDP

FIG. 5. The optimal decision for Sumatran tigers in the first year of action (20 years remaining to manage) dependent on our
belief in the presence of tigers in population A, bA, and our belief in the presence of tigers in population B, bB, when (a) population
A has a high probability of extinction (high return on investment) and population B has a low probability of extinction (low return
on investment) and (b) population A has a high probability of extinction (high return on investment) and population B has a low
probability of extinction (low return on investment) and the budget is reduced by one-third. Detectability, ds ¼ 0.78. Key to
abbreviations: MN, manage population A and do nothing in population B; NM, do nothing in population A and manage
population B; MM, manage both populations; MS, manage population A and survey in population B; and SM, survey in
population A and manage population B.
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do not differ if the populations have an equal risk of

extinction (return on investment) or their extinction risk

differs.

DISCUSSION

Threatened species managers need to decide how to

allocate their limited funds within conservation pro-

grams not only between management actions but often

between areas to be managed. In recognition of the cost

and objectives of conservation programs a number of

decision-making frameworks have been explored to

show how to achieve the best return on investment

(e.g., McCarthy et al. 2008). These frameworks have

provided significant insight into the best way to achieve

objectives for threatened species management.

Implementation of the best action from these frame-

works almost always requires knowledge of the state of

the system: management actions are state-dependent

(e.g., Shea and Possingham 2000, McCarthy et al. 2001).

The cryptic nature of most threatened species means

that in reality conservation managers may not know

with certainty the state of the species they are trying to

protect (Chadès et al. 2008, MacKenzie 2009). Managers

confronting such issues need more comprehensive

allocation frameworks that incorporate not only the

objectives of their management plan but an understand-

ing of their budget, the benefit and costs of different

actions, and their uncertainty in population or system

states that drive management. Our work on the

Sumatran tiger in two populations shows for the first

time that ignoring uncertainty about the presence of the

species leads to significantly suboptimal decision-mak-

ing.

A key limiting factor in almost all threatened species

management programs is money. Indeed, the amount of

funding available can have a significant impact on the

best management strategy to implement (e.g., McCarthy

et al. 2008). Interestingly, spending more money in one

area does not necessarily imply a consistent incremental

increase in return from that investment: there are likely

to be diminishing returns. This means that if our budget

is large enough we can get better returns by investing in

a second population as well. However, if funding is small

and the risk of extinction of the species in both areas

high, we get a better return by concentrating our

management in one population, in effect invoking the

concept of a triage (Bottrill et al. 2008, McDonald-

Madden et al. 2008). Deciding when to change from

managing both areas to implementing management in

one population depends heavily on the framework used

to optimally allocate resources. A strategy based around

the real state of the system (MDP) provides hard

boundaries for when to make a decision to cease

management in an area. Such an approach could have

two outcomes: managers might make this decision too

early and risk extinction of a population, or they might

continue investment in a population that is beyond

recovery and thus waste resources that could be

reallocated where management can still benefit the

species.

Treating surveys as a possible action is a key

difference between a completely observable and a

partially observable approach to resource allocation

between populations of a threatened species. Surveying

with the aim of detecting a species can significantly alter

our understanding of the real state of the populations,

and thus guide better management. Monitoring is

important in areas in which our belief in the presence

of a threatened species is low. In many ways, this form

of monitoring enables managers to make informed

decisions to either reinstate or cease management in an

area when funding is insufficient to secure both

populations. This provides an informed and justifiable

decision to triage the management of a threatened

species in some areas. Of course, the benefits of gaining

information on the presence of a species in a populations

is strongly influenced by how much time we have left to

learn, a factor that may be beyond the control of most

managers. However, if surveying can be improved by

increasing the detection capability of surveys, without

increasing cost, then the benefits of monitoring will

increase and thus our effectiveness in learning the state

of the system we are managing may improve. In

contrast, if our survey technique is less efficient or the

threatened species we are managing is more cryptic than

the Sumatran tiger the benefits of surveying will decrease

and we should either do nothing or implement

management depending on our belief in the presence

of our species in that area (see Fig. 4a). Information gain

can also occur during management actions, for example

we may observe a tiger when we are implementing anti-

poaching patrols. For the Sumatran tiger we have

assumed that detection during management is rare.

Detection during management may increase if, for

example, we are managing a less cryptic species or we

can implement surveys during management for no extra

investment. If detection of the species during manage-

ment is increased, then management also provides the

benefits of gaining information on the status of the

population and thus, as one might expect, monitoring

alone is rarely optimal (Fig. 4b). The impact of detection

from both surveillance and management highlights the

importance of incorporating information gain into the

decision-making framework.

The importance of considering the uncertainty in the

system state is further highlighted by the considerable

difference in performance of the MDP and POMDP in

reaching our conservation objective. Including the

possibility that the species can be detected (or not)

while managing and explicitly integrating the value of

information significantly improves the performance of

management. Interestingly, an increase in funding

available to implement our management strategy will

increase the performance of POMDP but does not affect

that from the MDP strategy. In fact no matter how

much we increase the budget available to management,
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even enough to always manage two populations

effectively, the MDP strategy is still state dependent

and driven by what we detect in the population during

management. Hence, if we do not see the species in both

populations (observation absent/absent) we will assume

that the species is not present in each area and thus not

manage in either area as given by the optimal MDP

strategy for that population state. In essence we could be

not managing when the species still persists, an error

that in reality could lead to increased extinction risk for

the species. Comparable performance between the two

approaches is only achieved when the detectability of the

species through passive observation during management

is close to 100%. Here the benefits of monitoring are

essentially removed and the system state can be

effectively observed during management. In reality, this

case is uncommon as threatened species are invariably

rare and often cryptic. In many cases, the observability

of the species during management will be less than 100%

and thus following a strategy derived assuming perfect

detectability of the system could lead to very suboptimal

results. Of course there are some cases where species

must be detected during management for management

to be implemented successfully, for example vaccination

or weed fumigation. The requirement for detection to

occur for the benefits from these management actions to

be obtained essential puts a caveat on the implementa-

tion of these actions; it does not however mean that

detection of the species during such management actions

is certain (100%). The direct link between management

actions and detection required here can be incorporated

into the POMDP framework but cannot be explored

within a framework that assumes that the system is

completely observable (i.e., MDP).

Despite the significant improvement in performance

of a strategy that incorporates uncertainty and our

ability to learn about the state of the system, there are

some important drawbacks to POMDP we need to

FIG. 6. The optimal decision for Sumatran tigers over the last five years of management dependent on our belief in the presence
of tigers in population A, bA, and our belief in the presence of tigers in population B, bB, when both population have high
probability of extinction (high return on investment) and the budget is reduced by one-third. The lines show how our beliefs in the
persistence of tigers in each population change through time given that no tigers are detected (numbers in square brackets are
x- and y-coordinates of points at each time step). The two line sequences show two different initial belief states: (1) where we have
full belief in the persistence of tigers in each population (bA¼1 and bB¼1) and (2) when we have differing beliefs in each population
(bA¼ 0.4 and bB¼ 0.6). The color of the line represents the action that should be taken from the optimal strategy in the preceding
year (actions are also labeled). Detectability, ds ¼ 0.78. Key to abbreviations: MN, manage population A and do nothing in
population B; NM, do nothing in population A and manage population B; MM, manage both populations; MS, manage
population A and survey in population B; and SM, survey in population A and manage population B.
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highlight. Using POMDP we assumed that we know the

probability of detection of a species when we survey an

area. Such information is often difficult to estimate but

can be approximated for cryptic species by repeated

sampling methods (MacKenzie 2006). We also assume

that we know the relationship between extinction risk

and investment in management. In other words, we

know the effectiveness of our direct management

actions. Such functions are essential for deriving the

transition probabilities necessary to utilize both the

MDP and POMDP methods. Structural uncertainty in

these functions can be considered by incorporating into

the decision-making framework multiple functions of

how management benefit might change and our ability

to learn which is the true function of management

benefit based on the actions implemented (Nichols and

Williams 2006, MacKenzie 2009, Williams 2009,

McDonald-Madden et al. 2010). In essence incorporat-

ing such uncertainty would lead to an adaptive

framework that enabled decision-makers to deal with

not only uncertainty in the state of the system being

managed and but also the structural uncertainty within

the parameterization of the problem. Answering this

fully adaptive management problem with both forms of

uncertainty would require solving a multi-dimensional

POMDP. Further, the complexity of problems that can

be explored using POMDP is limited. Deriving an exact

optimal strategy using POMDP is expensive in terms of

computational time and memory. This means that we

are also haunted by the curse of dimensionality (Bellman

1957) and thus the state space over which we can

optimize is limited. Here we explore the optimal

allocation of resources between two populations of a

threatened species but if we extend the reality of the

problem to more populations we cannot derive an exact

optimal strategy using POMDP. However approxima-

tion methods can be explored to derive an allocation

strategy given our uncertainty in the state of the system

with more realism—essentially enabling us to escape this

curse of dimensionality (Ross et al. 2008). In addition to

the state space limitation, the complexity of solving a

POMDP increases exponentially with the time horizon.

Here we have provided an exact solution to the POMDP

for a finite time horizon of 20 years, allowing us to show

how the optimal strategy will change as the time

remaining in a management program declines. While

some management programs are limited to a finite

management period, for example they have a defined

investment timeframe from a funding body; other

threatened species programs with the aim of conserva-

tion will not have a finite management horizon and may

instead plan to manage the species in perpetuity. In this

case, what is needed is an optimal strategy that

managers can implement for as long as the program

continues, deemed in the artificial intelligence literature

as an infinite time horizon solution (Puterman 1994). In

our case, deriving an infinite horizon solution is not

computationally feasible; however, this solution may be

approximated by the first time step (in this case year 20).

New approximation methods do not allow us to

FIG. 7. The performance over a 20-year management horizon of a partially observable Markov decision process (POMDP) and
fully observable (MDP) optimization of threatened species management with increasing observability of that species during
management, dm. The figure shows results based on (a) low budget and (b) high budget. Here 100% performance means that both
populations remain extant over the 20-year management horizon. Dashed gray lines represent the performance of both strategies
assuming observability of 90% (dm¼ 0.9). The effectiveness of surveying does not affect the comparison of these two techniques.
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completely escape the problem of a more complex state

space (i.e., moving from a simple extant/extinct state

space to a individual based state space) using POMDP.

The solutions from complex POMDP are difficult to

interpret and represent in a way that can facilitate

conservation management. To improve our ability to

manage rare species we need to find new ways to

incorporate partial observability that allow for increased

system complexity and utility of the optimal strategies.

The essential next step must happen with the collabo-

ration of Artificial Intelligence researchers and ecolo-

gists.

Uncertainty is inherent in conservation problems and

a handful of studies have explored optimization of

management decisions in light of such uncertainties (see

McCarthy and Possingham 2007, Rout et al. 2009).

Studies thus far have focused on uncertainty in

particular parameters of the system and optimized over

one starting belief state related to the estimate of this

parameter. Our knowledge of the state of the systems

that we manage is never complete. It is therefore

remarkable that this study is one of the first utilizing

an optimization procedure that deals directly with this

type of incomplete knowledge (POMDP). Using

POMDP has allowed us to confront the rarely-framed

question of whether uncertainty surrounding our belief

in the state of threatened species populations should

change our actions. Our answer is simple: in the current

climate of limited conservation funding this uncertainty

does indeed impact how we should manage a threatened

species. If we are to make the best decisions for

threatened species management we must allocate fund-

ing based not only on the bang we get for our buck but

on our ‘‘certainty’’ in achieving those results.
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