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Abstract 45 

Aim  46 

Threatened species often exist in small numbers in isolated populations. Limited financial 47 

resources usually constrain conservationists to allocate funds to a subset of these populations. 48 

Since obtaining information required to maximize the amount of genetic and phenotypic 49 

variation protected can be costly and time-consuming, the utility of surrogates should be 50 

explored. This study tests the efficacy of three simple and cost-effective geographic measures 51 

in capturing genetic and phenotypic variation of fragmented populations when setting 52 

conservation priorities. 53 

 54 

Location 55 

Vanuatu archipelago. 56 

 57 

Methods  58 

We used neutral genetic data (mtDNA and microsatellites) and morphometric data (a proxy 59 

for functional variation) for two bird species displaying different patterns of regional 60 

population genetic structure: Zosterops flavifrons and Z. lateralis. We tested the performance 61 

of three geographical surrogates (maximising: geographic distance between islands; area of 62 

islands; geographic representation of islands), in representing divergence between and 63 

diversity within populations, constrained to the number of islands being protected. 64 

 65 

Results 66 

Maximizing geographic separation of sites provided the best surrogate for a constrained 67 

budget (<50% of the populations) for both species. For a larger protected area system (>50% 68 

of the populations) the spatially most representative sites were often more effective. Selecting 69 

islands based on size retained about half of within population genetic diversity; however this 70 

was not much higher than selecting the islands randomly. 71 

  72 

Main Conclusions 73 

The ability of surrogates to capture genetic or phenotypic variation varied depending on the 74 

species, genetic markers and number of islands selected. While imperfect, selection of 75 

populations based on simple geographic surrogates for genetic and phenotypic variation will 76 

generally be better than random selection for conserving the evolutionary potential of 77 
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threatened populations when time and money limit a more thorough and direct analyses of 78 

genetic and phenotypic variation.  79 

 80 
 81 

Keywords: conservation management, genetic distance, geographic distance, area, Vanuatu, 82 

Zosterops 83 

84 
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Introduction 85 

Despite rapid declines (Balvanera et al., 2006), economic resources available to biodiversity 86 

conservation are limited (James et al., 1999). Managers and policy makers need to choose 87 

strategies that maximize conservation of single species within financial constraints 88 

(McDonald-Madden et al., 2008). A crucial decision faced by managers is how much time 89 

and money should be allocated to compile and sample data to identify the most appropriate 90 

populations in which to invest (Possingham, 2007; Grantham et al., 2008; 2009).  91 

 92 

Maximum representation and persistence of biodiversity achieved at a minimum cost, are the 93 

central goals of conservation plans (Moilanen et al., 2009). The majority of conservation 94 

plans focus on representing biodiversity patterns rather than on persistence (Frankel, 1974; 95 

Smith et al., 1993; Moritz, 2002). However, it is essential to include the processes affecting 96 

both the amount and distribution of biological variability and the ability for organisms to 97 

adapt and evolve (Crandall et al., 2000; Mace & Purvis, 2008). 98 

 99 

 Divergence among populations accumulated through time may lead to speciation (Slatkin, 100 

1987), and high genetic diversity within populations increases reproductive viability, 101 

resilience to catastrophes, diseases and changing conditions (Soulé, 1987). Thus, researchers 102 

have emphasized both the importance of maximizing protection of the most divergent 103 

populations (Vane-Wright et al., 1991; Faith, 1992; Moritz, 1994; Crandall et al., 2000; 104 

Moritz, 2002; Redding & Mooers, 2006; Bonin et al., 2007; Isaac et al., 2007) and for 105 

identifying and protecting within-population genetic diversity (Petit et al., 1998; Vandergast 106 

et al., 2008; Thomassen et al., 2011). Ideally, knowledge of adaptive genetic variation levels 107 

would be used to assess these attributes. However, information from neutral loci is generally 108 

employed to measure the distribution of genetic variation, with ensuing inferences for past 109 

and future adaptive processes (Moritz, 1994).   110 

 111 

Restricted funds for conservation and the urgency of some decisions, sometimes impede the 112 

process of gathering and analysing genetic information.  More easily obtained information 113 

that provides a degree of surrogacy for conserving genetic variation across populations is an 114 

alternative when planning for evolutionary process protection. Effective biodiversity 115 

surrogates ensure adequate representation of other biodiversity features (Moritz, 1994; 116 

Crandall et al., 2000; Sarkar et al., 2005; Rodrigues & Brooks, 2007). Only few studies have 117 

attempted to determine the effectiveness of surrogates of genetic diversity in conservation 118 
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planning. While species richness is a generally effective surrogate of phylogenetic diversity 119 

at the between species level (Rodrigues et al., 2011), effective intra-specific surrogates have 120 

not yet been established. 121 

 122 

Surrogates for intraspecific genetic variation of fragmented populations could be derived 123 

from geographic distances between fragments and their area. The strong biogeographical 124 

basis of these surrogates means they can be used anywhere in the world without detailed 125 

environmental information.   Isolation-by-distance (IBD) patterns can reflect the relationship 126 

of genetic divergence between populations and geographic distance. IBD patterns, where 127 

genetic and geographic distance between populations are positively correlated (Wright, 128 

1943), are commonly reported in the population genetic literature (Peterson & Denno, 1998; 129 

Crispo & Hendry, 2005; Jenkins et al., 2010). However the strength of IBD relationships will 130 

likely determine the surrogacy degree for genetic divergence i.e. towards genetic isolation 131 

under zero gene flow conditions or towards genetic panmixia under unrestricted gene flow 132 

conditions (Hutchison & Templeton, 1999).  133 

 134 

Fragment area, as a surrogate for genetic diversity within populations can be used as a proxy 135 

for population size, and population size and genetic diversity often show a positive 136 

relationship (Frankham, 1996). In small populations, the effects of genetic drift are more 137 

pronounced, rare alleles are lost via genetic drift, whereas larger populations maintain higher 138 

levels of genetic diversity (Wright, 1931; Lande & Barrowclough, 1987). 139 

 140 

A third potential surrogate derived from geographic data aims to capture adequate 141 

representation (sensu Faith & Walker (1996)). This surrogate, based on so-called “locations 142 

problems” finds the optimal location of an object in space by minimising the distance 143 

between selected and unselected objects. For example, in choosing a certain number of 144 

islands from an archipelago, the set of islands with the shortest average distance to all other 145 

islands would be considered representative of the geographical space covered by the 146 

archipelago. This representative spatial arrangement, might capture the largest range of 147 

between-population divergence and within-population diversity of a widely distributed 148 

species.  Naturally formed fragments or islands are unlikely to be regularly spaced, therefore 149 

the representative islands are most likely to be drawn from geographically separated clusters, 150 

thereby maximising population divergence. These same representative islands might have a 151 
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greater opportunity for gene flow from the widest range of other island populations 152 

(regardless of their area), thereby maximising within-population diversity. 153 

 154 

Naturally fragmented distributions in watersheds, ecoregions or bioregions have been applied 155 

as explicit surrogates for ecological and evolutionary processes incorporating environmental 156 

and/or habitat gradients and/or geographic barriers in the planning process ( Cowling & 157 

Pressey, 2001; Klein et al., 2009). Here, we focus on oceanic island populations, even though 158 

these surrogates could be used in other island-type landscapes, such as mountain tops or 159 

rainforest fragments. Island populations generally have high conservation value because 160 

isolated populations are often genetically and/or phenotypically distinct (Wilson et al., 2009) 161 

but exist in relatively small populations with lower levels of genetic diversity than mainland 162 

populations (Whittaker & Fernández-Palacios, 2007). These features can increase their 163 

vulnerability to natural or anthropogenic disturbance (Rosenzweig, 1995). 164 

 165 

According to the rationale outlined above, we aim to determine the effectiveness of: 1) 166 

maximising geographic distance between islands as a surrogate for between-population 167 

variation; 2) maximising geographic area as a surrogate for within-population variation; and 168 

3) spatial representativeness as a surrogate for capturing between- and within-population 169 

variation. In each case, we considered both neutral variation (neutral molecular markers) and 170 

putatively adaptative variation (morphological measurements). We analysed variation in 171 

Zosterops flavifrons and Z. lateralis, bird species with coincident distributions across the 172 

Vanuatu archipelago (Fig. 1). The species’ have different population genetic structures, 173 

providing an excellent opportunity to assess the general effectiveness of geographic 174 

surrogates for genetic variation for species and  the amount of genetic variation captured 175 

under different conservation scenarios. Throughout, we use the term ‘island’ to refer to 176 

single-island populations of Z. lateralis or Z. flavifrons. 177 

 178 

 179 

Methods 180 

Study area 181 

Vanuatu is a Y-shaped oceanic archipelago about 2,000 km east of Northern Australia (Fig. 182 

1), which comprises 13 main islands (>160km2) and nearly 100 smaller ones formed along 183 

three volcanic belts, beginning approximately 20–22 Myr ago, with the bulk of current land 184 

area formed ≤0.5 Myr (Mallick, 1975). The environmental conditions (climate, soil and 185 
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vegetation type) can be grouped into northern (and central) islands and southern islands 186 

(Hamilton et al., 2010). The northern islands are wetter and less thermally variable but have 187 

more soil (Quantin, 1975) and vegetation types (ten out of the 12 major structural vegetation 188 

types recognised by Gillison (1975) occur only in northern and central islands). This pattern 189 

reflects the geological origin of the archipelago and is consistent across vertebrate and 190 

invertebrate fauna with congruent breaks in species assemblages (Hamilton et al., 2010). In 191 

Vanuatu, eight of the 127 bird species recorded are listed as endangered or vulnerable 192 

(Dutson, 2011). Their declines are attributed to forest loss and degradation, introduced 193 

predators and to a lesser extent hunting (Dutson, 2011).  194 

 195 

Z. flavifrons is endemic to the Vanuatu archipelago having colonized around 2-4 Myr ago, 196 

while Z. lateralis is not endemic and represents a more recent colonization, <0.5 Myr ago 197 

(Phillimore et al., 2008; Black, 2010). Multiple morphological subspecies have been 198 

described for both species (Mees, 1969) most of which show limited congruence with 199 

phylogenetic information (Phillimore et al., 2008; Black, 2010). Additionally, Z. flavifrons 200 

has been divided into two groups based on plumage colour, ‘yellow’ and ‘dark’ (Mayr 1945; 201 

Mees 1969; see Fig. 1). A comparison of regional genetic population structure between these 202 

species showed that distance-mediated gene flow influenced population structure in Z. 203 

lateralis, with highest connectivity among the central and northern islands of the archipelago 204 

(Clegg & Phillimore, 2010). In contrast, the population structure of Z. flavifrons showed a 205 

partial shift towards a drift-mediated system, with a higher level of population structure and 206 

weaker influence of distance-mediated gene flow (Clegg & Phillimore, 2010). Within island 207 

population genetic structure has not been investigated, however most of the islands are 208 

relatively small (being some tens of kilometres wide at their widest point) and within- island 209 

population genetic divergence is unlikely to be on par with between-island divergence. 210 

However finer-scale genetic structure may occur on the larger islands, such as Espiritu Santo 211 

and Malekula.   212 

 213 

Assessing the neutral genetic value of island subsets 214 

Neutral genetic variation of Z. flavifrons and Z. lateralis populations in the Vanuatu 215 

archipelago has previously been quantified using mitochondrial DNA (mtDNA; 351bp of 216 

ND3 and 308 bp of cytochrome b (Phillimore et al., 2008; Black, 2010) and microsatellite 217 

genotypes: eight loci for Z flavifrons and 11 loci for Z. lateralis (Phillimore et al., 2008; 218 

Clegg & Phillimore, 2010). To measure genetic divergence between populations, matrices of 219 
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pairwise genetic distances among island populations were calculated from mtDNA sequence 220 

and microsatellite genotypes (see Appendix 1 and Supplementary Online Material for 221 

details). Genetic diversity within populations was measured by microsatellite allelic richness. 222 

Since available morphological information could be used a priori in conservation decisions, 223 

we repeated the analysis of genetic data for each of the Z. flavifrons plumage colour groups 224 

considered separately (see Appendix 2, Supplementary Online Material).  225 

 226 

Between-population divergence 227 

All modelling described below was performed in the R framework for statistical computing 228 

(R Development Core Team, 2010). Genetic divergences among island populations were 229 

estimated with the Neighbour –Joining method in MEGA (Tamura et al., 2007). We created a 230 

tree for each genetic divergence index (P-net distance and pairwise FST for Z. flavifrons and 231 

pairwise FST for Z. lateralis) (Suppl. Figs.S1-3, respectively). Then the genetic divergence 232 

was calculated by adding the branch lengths of each tree of all possible combinations of 233 

choosing k islands from the total number of islands, n (eq. 1). The number of possible 234 

combinations (C) is given by: 235 

k! k)!-(n

 n!
=Cn

k

 , where:             (1) 236 

 237 

nflavifrons=13; and kflavifrons=2, 3,…, 13; or 238 

nlateralis=11; and klateralis= 2, 3,…, 11. 239 

 240 

 241 

Genetic divergence (GV) for each combination of k islands for both species were ranked from 242 

the highest GVk (maximum genetic divergence; MaxGV) to the lowest ranked GVk 243 

(minimum genetic divergence; MinGV). To allow comparison between the different genetic 244 

indices (P-net or pairwise FST) we calculated the percentage that each genetic value of k 245 

represented in the total genetic divergence (MaxGV).   246 

 247 

Within-population diversity 248 

We used microsatellite allelic richness as a measure of within-population diversity. Allelic 249 

richness is standardized according to the population with the smallest sample size (Mousadik 250 

& Petit, 1996). To calculate allelic richness for sets of islands, we identified all possible 251 
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combinations of k islands as described previously, and collapsed the microsatellite genotypes 252 

for selected islands into a “new” population. For example, if kflavifrons= 3 out of the set 253 

I={A,B,C,D,E,F,G,H,I,J,K,L,M}, one possible combination of k islands would be C1= 254 

{A,B,C}. The number of alleles in C1 were counted (such that shared alleles in A, B and C 255 

were counted only once) and the combined sample size calculated. We used the repeated 256 

random subsampling method (in the R package standArich v1.02 (Filipe, 2011) to calculate 257 

allelic richness for combinations of island populations, standardized by the smallest 258 

combined sample size in each case. This method provides highly precise and unbiased 259 

estimates of the allelic richness with statistical power to detect differences in variation 260 

(Leberg, 2002). Mean allelic richness and standard deviation were calculated from 10 261 

replicates of random subsampling for each possible combination of k.  Allelic richness of all 262 

combinations of k islands was ranked for each species to obtain maximum (MaxAR) and 263 

minimum (MinAR) allelic richness for each k. 264 

 265 

Assessing the potential adaptive variation value of island subsets 266 

We incorporated potentially adaptive variation into our analyses using  a phenotypic 267 

divergence matrix based on five morphological measurements (wing and tarsus length, bill 268 

length, depth and width) for each Zosterops species to quantify differences among islands 269 

(see Phillimore et al. 2008, Clegg & Phillimore, 2010). These morphometric traits have often 270 

been found to have a heritable component in birds (Merilä & Sheldon, 2001) and some traits 271 

have been shown to be heritable in another island Zosterops population (Frentiu et al., 2007; 272 

Clegg et al., 2008). For each species, we calculated the total phenotypic divergence (PD) 273 

protected by selecting a given combination of k islands out of n following the  same 274 

procedure  described above, but using the phenotypic divergence matrix instead of the genetic 275 

divergence matrix (Suppl. Figs.S4 and S5 for Z. flavifrons and Z. lateralis, respectively). 276 

Values were ranked to produce maximum (MaxPD) and minimum (MinPD) phenotypic 277 

divergence for each k. For Z. lateralis, two island populations (Ambae and Vanua Lava) with 278 

small sample sizes (<5) were excluded from the analysis, leaving nine island populations.  279 

 280 

Calculating the geographic surrogacy value of island subsets and their respective 281 

genetic or phenotypic value 282 

We tested the surrogacy value of three indices: maximising geographic distance between 283 

islands (farthest islands, henceforth, FI, measured in km) and maximising the area of islands 284 

(henceforth, area, measured in km2), both calculated in ArcGis version 9.3 using the ESRI 285 
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country layer, and maximising geographic representation of islands (henceforth, MR). . 286 

Geographic distance was expressed as a matrix of pairwise linear distances from the centroid 287 

of each island’s polygon to all other islands’ centroids. Area was expressed as a list of each 288 

island’s polygon area. To calculate the geographic surrogacy value of subsets of FI 289 

(Suppl.Fig.S7), we followed the previously described approach, but using the geographic 290 

distance matrix of the islands to generate the tree (Suppl.Fig.S6).  291 

 292 

Islands were ordered by area and the set of islands that maximized summed area for each k 293 

were identified; e.g. fork= 2 summed values for Espiritu Santo (4097 km2) and Malekula 294 

(2140 km2). MR islands were identified using the geographic distance tree (Suppl.Fig.S6) to 295 

find the combination of k islands that minimised the branch lengths’ sum between a selected 296 

island and the remaining unselected islands using eq. 2. (sensu Faith, 1992; Faith & Walker, 297 

1996), (Suppl.Fig.S7):  298 

 299 

𝑚𝑖𝑛∑ ([𝑑𝑘′,𝑘∈𝐾′])
𝑛
𝑘′∈𝐾′ , where                                                                                  (2) 300 

 301 

K’ is a set of nearest neighbour k’ islands. 302 

 303 

For each of the surrogates (FI, Area and MR), we extracted the corresponding, directly-304 

measured genetic values for all combinations of islands at each k. This  dataset consisted of 305 

the maximum and minimum genetic values measured directly for between population 306 

divergence (referred to MaxGV and MinGV, respectively), and within population diversity 307 

(MaxAR and MinAR, respectively) and maximum genetic divergence obtained from using 308 

the FI sets of islands, the genetic diversity obtained from using the largest islands (area) and 309 

the MR set of islands. Similarly, for phenotypic divergence we produced a dataset of 310 

maximum (MaxPD) and minimum (MinPD) phenotypic divergence measured directly from 311 

the phenotypic data protected when selecting the islands using all three geographic surrogates 312 

for each k set of islands.  313 

 314 

Testing performance of the geographic surrogacy values  315 

We tested the performance of surrogates by comparison to values from sets of randomly 316 

selected islands. For each k, 1000 random set of islands were drawn. At each iteration genetic 317 
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divergence and diversity and phenotypic divergence were calculated as described previously. 318 

The averages and 95% confidence intervals were calculated across all iterations.  319 

 320 

 321 

Results 322 

Genetic and phenotypic values of subsets of islands 323 

MaxGV and MinGV recovered from choosing a k-number of island populations are shown 324 

for the two pairwise genetic distance measurements of Z. flavifrons (Fig. 2a,b) and for 325 

pairwise FST of Z. lateralis (Fig. 2c). When more islands were selected, more genetic 326 

divergence was captured for both mtDNA and microsatellites (Suppl.TableS1a).  Genetic 327 

divergences protected for Z. lateralis were consistently higher than for Z. flavifrons at each k 328 

(Fig. 2b, c, Suppl.TableS1a). For example, in Z. lateralis, the four most genetically divergent 329 

populations captured over 97% of genetic variation based on microsatellites, compared to 330 

64.6% for Z. flavifrons. The results for Z. flaviforns analysed by plumage colour, are 331 

presented in Appendix 2. 332 

 333 

The directly measured allelic richness for both species also increased as more islands were 334 

selected (Suppl.Table S1b, Figs. 3a,b). However, the accumulation of allelic diversity with 335 

the addition of islands asymptoted faster in Z. lateralis than Z. flavifrons (Fig. 3b, 336 

Suppl.Table S1b).  Around 84% of Z. lateralis allelic richness could be protected by selecting 337 

two islands, compared to just over 68% in Z. flavifrons (Suppl.Table S1b). This reflects the 338 

difference in regional genetic population structures of both species. The addition of extra Z. 339 

lateralis populations does not dramatically increase allelic diversity. Alleles are more likely 340 

to be shared due to the high gene flow among most Z. lateralis populations . In contrast, Z. 341 

flavifrons populations are less influenced by gene flow, resulting in restriction of some alleles 342 

to particular populations, therefore, addition of islands increases allelic richness in generally 343 

larger increments. 344 

 345 

Phenotypic divergence for each species increased with addition of island populations (Fig. 4 346 

a, b, Suppl.Table S1c; and Suppl.Table S2c). The percentage of phenotypic divergence 347 

protected for Z. lateralis was consistently higher than for Z. flavifrons for a given k 348 

(Suppl.TableS1c). Again, this reflects higher average phenotypic divergence of Z. flavifrons 349 

populations compared to Z. lateralis populations (Suppl.TableS1c PST), and therefore slower 350 

accrual of phenotypic divergence when expressed as a percentage of the total.  351 
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 352 

Geographic surrogates for among-population genetic divergence  353 

Genetic divergence obtained by selecting islands based on FI, MR or at random were all 354 

below the MaxGV extracted directly from the genetic data for both species for all k-values 355 

(Fig. 2 a-c, Suppl.Table S1a). The success with which surrogates (compared to random 356 

selection) captured genetic divergence varied depending on species, genetic markers and 357 

number of islands selected. Choosing two furthest apart islands captured nearly 45% of 358 

mtDNA divergence and 30% of microsatellite divergence in Z. flavifrons, and 56% of 359 

microsatellite divergence in Z. lateralis. The MR sets of islands retained a minimum of 4% of 360 

mtDNA divergence and 6% of microsatellite divergence in Z. flavifrons, and 9% of the total 361 

microsatellite divergence in Z. lateralis. Random selection captured around 28% for mtDNA 362 

and 21% of microsatellite divergence in Z. flavifrons, and 28% of total microsatellite 363 

divergence in Z. lateralis (Suppl.Table S1a). 364 

 365 

In Z. flavifrons, greater deviations from MaxGV were observed when using the microsatellite 366 

dataset compared to mtDNA dataset (Fig. 2b, Suppl.Table S1a). The best surrogate for 367 

mtDNA divergence was to use FI when k6, but to choose the MR islands when k7. 368 

Choosing islands randomly never produced the highest mtDNA genetic divergence, however, 369 

random selection outperformed FI (but not MR) for k =7,8,9  and 12  and MR (but not FI) for 370 

k6. Identifying the best geographic surrogate for Z. flavifrons based on microsatellite 371 

divergence was less clear. When k≤3 and k12, the FI surrogate performed best. The MR set 372 

of islands tended to be best when k=6 and 8≤ k 11, however, random selection performed 373 

best when k=4, 5 and 7. In addition random selection outperformed MR (but not FI) when 374 

k≤3, and outperformed FI (but not MR) when k=6 and 8  k ≤ 11. The best performing 375 

geographic surrogate for Z. lateralis microsatellite divergence was to use FI when k4, but to 376 

choose the MR islands when k5.  Random island selection for Z. lateralis was less effective 377 

than using at least one of the geographic surrogates across all values of k. However it 378 

outperformed MR (but not FI) for k=2 and 4 and FI (but not MR) for k= 6 and 7. 379 

 380 

Geographic surrogates for within-population genetic diversity  381 

Geographic surrogates of island area and MR did not capture the full degree of genetic 382 

diversity based on allelic richness, and their effectiveness varied depending on species and 383 

number of islands selected. Choosing the largest islands captured 64% of MaxAR for Z. 384 
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flavifrons, and 72% of MaxAR for Z. lateralis (Fig. 3; Suppl.Table S1b). This compares to 385 

the minimum 45% and 77% respectively for the MR islands. Random selection captured 52% 386 

of MaxAR in Z. flavifrons, and 75% in Z. lateralis (Suppl.Table S1b). 387 

 388 

Area proved the best geographic surrogate in Z. flavifrons, when k5 and MR was best when 389 

k7. At medium values of k (6<k<8 where the highest number of combinations is possible) 390 

the discrepancy between actual allelic richness and that captured using the area surrogate 391 

widened (Fig. 3a, Suppl.Table S1b). It is interesting to note that the closest representation of 392 

MaxAR using an area surrogate to the actual allelic diversity for Z. flavifrons occurred at k =2 393 

and k =12. Choosing the two largest islands would capture 93% of the actual MaxAR (69% 394 

of the total diversity). For Z. lateralis, there was little consistency in performance of 395 

surrogates, with the best result alternating among area, MR and random selection 396 

(Suppl.Table S1b). Area was the best surrogate only when k>7, while MR worked best for 397 

k=2 and k=5 and 6. (Fig.3; Suppl.Table S1b). Random choice of islands returned the highest 398 

percentage of protected variation at k=3 and 4 (Fig. 3 and Suppl.Table S1b). 399 

 400 

Geographic surrogates for phenotypic divergence  401 

As with genetic divergence, the best geographic surrogates for capturing phenotypic 402 

divergence varied by species and the value of k. Choosing sets of FI captured a minimum of 403 

26% of phenotypic variation in Z. flavifrons and 34% in Z. lateralis (Suppl.Table S1c). For 404 

MR, the corresponding percentages were around 19% for all Z. flavifrons and 14% for Z. 405 

lateralis.  406 

 407 

In Z. flavifrons, choosing the FI performed best when k5 and k =12, MR performed best for 408 

k=6, 8, 9 and 10. Random selection performed best at k=7 and 11, but also performed better 409 

than FI (but not MR) at k=6 and k=8 to 10, and better than MR (but not FI) when k5 and 410 

k=12 (Fig. 4a; Suppl.Table S1c). In Z. lateralis, choosing the FI was the better geographic 411 

surrogate for MaxPD (Fig. 4b; Suppl.Table S1c) for all k except k=7, when MR was the best 412 

surrogate. Random selection of islands was never the best performer, but outperformed MR 413 

(but not FI) when k4 (Fig 4b; Suppl.Table S1c). 414 

 415 

 416 

Discussion 417 
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Conservation plans accounting for genetic variation targeting evolutionary significant units 418 

instead of species are more cost-effective in preserving evolutionary processes (Vasconcelos 419 

et al., 2012). Assessing genetic variation for conservation can be expensive and time-420 

consuming, therefore surrogate measures of variation are worth exploring.  We expected that 421 

differences in regional population genetic structure of the species’ considered here, would 422 

influence performance of the different geographic surrogates. FI was expected to capture 423 

genetic and phenotypic divergence effectively for Z. lateralis, a more recent colonizer, with 424 

strong signatures of distance-mediated gene flow across the archipelago (Clegg & Phillimore, 425 

2010). Island area, as a proxy for population size, was expected to perform well for Z. 426 

lavifrons, as their populations show a weaker influence of distance-mediated gene flow with 427 

drift also affecting divergence (Clegg & Phillimore, 2010).  428 

 429 
The effectiveness of easily obtainable geographic surrogates to capture intraspecific genetic 430 

and phenotypic variation in two species of island-dwelling birds was variable. We did not 431 

identify a single surrogate performing consistently better for both species, or indeed one 432 

which performed consistently better than random across all numbers of selected islands 433 

within each species. Still, important generalisations can be drawn from our results.   FI 434 

represented genetic and phenotypic divergence better when protecting less than 50% of island 435 

populations of both species, except for Z. flavifrons microsatellite divergence. Therefore, 436 

despite the difference in regional population structures of the two species, FI was useful for 437 

capturing the most divergent populations at least at smaller values of k.  438 

 439 

When protecting more than 50% of islands, choosing the MR sets was often a better surrogate 440 

for capturing genetic and phenotypic divergence among populations. This may result from 441 

maintenance of connectivity between populations while maximizing the depth of the genetic 442 

diversity. As conservation targets can usually only protect at most 50%, of remaining 443 

populations (McDonald-Madden et al., 2008), our results suggest that in systems with 444 

suspected gene flow, FI would be the surrogate of choice for maximising between population 445 

divergence in the absence of detailed empirical studies. The geographical positioning of 446 

islands or fragments may be another important factor to consider, as under a less linear 447 

arrangement of islands, MR may perform well at low values of k.  448 

Interaction of spatial arrangement and islands’ size may cause a trade-off in capturing within 449 

versus between population diversity.  Highly divergent populations with high within-450 
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population variability would capture more diversity than populations with low divergence 451 

and low variability. Although often highly divergent populations are genetically depauperate 452 

(e.g. small peripheral populations), and large populations with low divergence have higher 453 

within population diversity (e.g. large central populations connected by high levels of gene 454 

flow).  In archipelagos with roughly linear spatial arrangement, using FI and MR surrogates 455 

will result in selection of peripheral and central islands, respectively. Where central islands 456 

are relatively large and the peripheral relatively small, as in Vanuatu, FI is unlikely to 457 

simultaneously maximize within and between population variation, whereas MR will fail to 458 

capture the most divergent peripheral populations. 459 

The crucial factor when maximising within- population genetic diversity is effective 460 

population size: rare alleles’ loss via drift is more likely in small populations (Wright, 1943; 461 

Futuyma, 1986). We expected that island size (as proxy for population size) would be an 462 

appropriate surrogate for genetic diversity, particularly where all gene flow among 463 

populations has ceased, and diversity within populations is mediated by genetic drift (and 464 

input from new mutations over very long timescales) (Jordan & Snell, 2008). The difference 465 

in effectiveness of area as a surrogate for within-population diversity in both species was 466 

consistent with this expectation; area performed well at least for lower values of k in Z. 467 

flavifrons, but was not the best geographic surrogate for Z. lateralis. This may be explained 468 

by the complex dynamics of gene flow in the Z. lateralis system, including large asymmetries 469 

in gene flow direction, and potential influences of population size on levels and direction of 470 

gene flow (Clegg & Phillimore, 2010). 471 

 472 

Further avenues & limitations 473 

Combining several surrogates may enhance the benefits for genetic and phenotypic variation 474 

and may even serve to maximise evolutionary potential of protected populations (Weigelt & 475 

Kreft, 2013). Island biogeography studies have improved our understanding of how 476 

evolutionary processes structure morphological and genetic diversity within and between 477 

fragmented populations (e.g. Heaney, 2007). For example, the rate of speciation on islands 478 

increases with island size, island age, topographical and habitat diversity, ecological and 479 

geological features and with island’s isolation (e.g. Whittaker et al., 2008; Losos & Ricklefs, 480 

2009; Wilson et al., 2009; Kisel & Barraclough, 2010; Vasconcelos et al., 2010). These 481 

factors could be correlated with each other, as larger or intermediate age islands tend to have 482 
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greater habitat/topographic diversity (MacArthur & Wilson, 1967; Kirchman & Franklin, 483 

2007).  484 

 485 

The degree to which these same surrogates would be useful when targeting variation in taxa 486 

(e.g. amphibians, reptiles, mammals, insects) provides a further line of enquiry. Divergence 487 

metrics may work best for species that maintain a gene-flow mediated population structure, 488 

e.g. some bird species or flying insect species. More sessile organisms or those with limited 489 

dispersal capacity could tend to have more of a drift-mediated population structure with little 490 

gene flow among populations (Kisel & Barraclough, 2010) and therefore diversity metrics 491 

may perform better. Island biodiversity patterns within-species are broadly dictated by the 492 

same biogeographical processes although the scale at which these processes occur may be 493 

very different across taxa (Whittaker et al., 2008). There is not a feasible method to test if 494 

regional population structure is gene-flow or drift mediated without doing direct genetic 495 

analyses. For species with expected high levels of gene flow between populations, ensuring 496 

the maintenance of gene flow between conserved islands is very important. This may 497 

necessitate preservation of some habitat in intervening islands or fragments that facilitate 498 

gene flow. Assessing the applicability of our method across multiple taxa including recently 499 

fragmented continental populations requires further examination.  500 

 501 

In some cases, geographic surrogates such as FI might not be an appropriate approximation 502 

of genetic and phenotypic variation. For example in populations fragmented very recently the 503 

time required to re-establish a regional population genetic structure may delay a relationship 504 

between divergence measures and geographic distance (Tamura et al., 2007). In other cases, 505 

complete population isolation over a long evolutionary timeframe could eliminate any 506 

relationship between geographic distance and genetic divergence. Other processes that might 507 

affect this approach’s utility include asymmetrical migration rates (e.g. source-sink 508 

dynamics), local adaptation, or differences between mtDNA and microsatellites concordance 509 

estimates. Geographic isolation may not result in much phenotypic divergence if 510 

environments (and therefore selection regimes) are very similar. Neutral divergence will 511 

accrue in the absence of gene flow. Hence, maximizing physical or ecological distinctiveness 512 

(whenever data is available) of islands as well as geographic measurements would improve 513 

the genetic variability protected using geographic surrogates. 514 
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Without previous knowledge of population genetic structure, planners may be reluctant to use 515 

geographic surrogates. However, delaying the decision while data are gathered may lead to 516 

lost opportunities for conservation. Conversely, insufficient prior knowledge may lead to 517 

poor decisions (Possingham, 2007; Black, 2010). Hence we do not argue that genetic studies 518 

are not desirable to improve conservation decisions (Leberg, 2002), and instead suggest 519 

planners analyse the trade-off between time and money required to gain genetic information 520 

and the benefits those data can provide relative to an immediately available surrogate. 521 

 522 

In conclusion, for simple geographic surrogates to be effective conservation tools they must 523 

indicate an underlying trait, and be easily and rapidly assessable. Simple and easily obtained 524 

surrogates or combinations of surrogates would be a significant step forward for threatened 525 

species management on islands, given the limited financial resources and the urgency of most 526 

conservation actions. Our analyses show that there is no simple best surrogate across all the 527 

scenarios examined, but a combination of surrogates may improve the outcome. In the 528 

absence of directly gathered population-level information, maximising geographic distance 529 

among conserved populations (especially for small numbers), serves as an attainable, though 530 

imperfect surrogate under a range of scenarios. 531 

 532 
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Figure Legends 723 
 724 
Fig. 1:Major islands of the Vanuatu archipelago, located in southwest Pacific region 725 

(inset). The endemic Zosterops flavifrons is found on all of the 13 major islands. The islands 726 

where the dark plumage group occurs are in dark grey, and the islands where the yellow 727 

plumage group occurs are in light grey. Black triangles mark the islands where Z. lateralis 728 

also occurs. Labelled islands were sampled:  729 

A - Vanua Lava; B – Gaua; C - Espiritu Santo; D – Maewo; E – Ambae; F – Pentecost; G – 730 

Malekula; H – Ambrym; I – Epi; J – Efate; K – Erromango; L – Tanna; M – Aneityum. 731 

 732 

Fig.2: Changes in the genetic divergence (GV) protected using geographic distance between 733 

islands as surrogates of genetic variation for each metric when selecting k number of islands 734 

for conservation: a) Pnet- distance of Z. flavifrons, b) pairwise FST of Z. flavifrons; and c) 735 

pairwise FST of Z. lateralis. Performance curves are shown for the maximum (MaxGV) and 736 

minimum (MinGV) genetic value captured when using genetic data directly, and the genetic 737 

value protected when selecting subsets of islands furthest apart (FI), subsets of islands 738 

representing the geographically most representative set of islands (MR) and random island 739 

selection (Random).  740 

 741 

Fig. 3: Changes in genetic diversity (GV) protected (as allelic richness) when selecting k 742 

number of islands for conservation: largest area size of islands (area), and  islands most 743 

representative of the geographic space  (MR) for a) Z. flavifrons and b) Z. lateralis. 744 

Performance curves are shown for the maximum (MaxAR) and minimum (MinAR) genetic 745 

value captured when using genetic data directly, and the genetic value protected when 746 

selecting subsets of islands furthest apart (FI), subsets of islands representing the 747 

geographically most representative set of islands (MR)and random island selection 748 

(Random). 749 

 750 

Fig.4: Changes in phenotypic divergence (PD) protected when selecting k number of islands 751 

for conservation for a) Z. flavifrons and b) Z. lateralis. Performance curves are shown for the 752 

maximum (MaxPD) and minimum (MinPD) amount of phenotypic divergence protected by 753 

measuring the phenotypic divergence directly, when selecting subsets of islands furthest apart 754 

(FI), subsets of islands representing the geographically most representative set of islands 755 

(MR)and random island selection (Random).756 
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