3,421 research outputs found
Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation
Various techniques have been applied for the functional analysis of synaptic transmission in Cultured neurons. Here, we describe a method of studying synaptic transmission in neurons cultured at high-density from different brain regions such as the cortex, striatum and spinal cord. We use postsynaptic whole-cell recordings to monitor synaptic Currents triggered by presynaptic action potentials that are induced by brief stimulations with a nearby extracellular bipolar electrode. Pharmacologically isolated excitatory or inhibitory postsynaptic currents can be reliably induced, with amplitudes, synaptic charge transfers, and short-term plasticity properties that are reproducible from culture to culture. We show that the size and kinetics of pharmacologically isolated inhibitory postsynaptic Currents triggered by single action potentials or stimulus trains depend on the Ca2+ concentration, temperature and stimulation frequency. This method can be applied to study synaptic transmission in wildtype neurons infected with lentiviruses encoding various components of presynaptic release machinery, or in neurons from genetically modified mice, for example neurons carrying floxed genes in which gene expression can be acutely ablated by expression of Cre recombinase. The preparation described in this paper should be useful for analysis of synaptic transmission in inter-neuronal synapses formed by different types of neurons. (c) 2006 Elsevier B.V. All rights reserved
Harmonic decomposition to describe the nonlinear evolution of stimulated Brillouin scattering
An efficient method to describe the nonlinear evolution of stimulated Brillouin scattering(SBS) in long scale-length plasmas is presented in the limit of a fluid description. The method is based on the decomposition of the various functions characterizing the plasma into their long- and short-wavelength components. It makes it possible to describe self-consistently the interplay between the plasmahydrodynamics,stimulated Brillouin scattering, and the generation of harmonics of the excited ion acoustic wave(IAW). This description is benchmarked numerically in one and two spatial dimensions [one dimensional (1D), two dimensional (2D)], by comparing the numerical results obtained along this method with those provided by a numerical code in which the decomposition into separate spatial scales is not made. The decomposition method proves to be very efficient in terms of computing time, especially in 2D, and very reliable, even in the extreme case of undamped ion acoustic waves. A novel picture of the SBS nonlinear behavior arises, in which the IAWharmonics generation gives rise to local defects appearing in the density and velocity hydrodynamics profiles. Consequently, SBS develops in various spatial domains which seem to be decorrelated one from each other, so that the backscattered Brillouin light is the sum of various backscatteredwaves generated in several independent spatial domains. It follows that the SBSreflectivity is chaotic in time and the resulting time-averaged value is significantly reduced as compared to the case when the IAWharmonics generation and flow modification are ignored. From the results of extensive numerical simulations carried out in 1D and 2D, we are able to infer the SBSreflectivity scaling law as a function of the plasma parameters and laser intensity, in the limit where the kinetic effects are negligible. It appears that this scaling law can be derived in the limit where the IAWharmonics generation is modeled simply by a nonlinear frequency shift
Critical Strain Region Evaluation of Self-Assembled Semiconductor Quantum Dots
A novel peak finding method to map the strain from high resolution transmission electron micrographs, known as the Peak Pairs method, has been applied to In(Ga) As/AlGaAs quantum dot (QD) samples, which present stacking faults emerging from the QD edges. Moreover, strain distribution has been simulated by the finite element method applying the elastic theory on a 3D QD model. The agreement existing between determined and simulated strain values reveals that these techniques are consistent enough to qualitatively characterize the strain distribution of nanostructured materials. The correct application of both methods allows the localization of critical strain zones in semiconductor QDs, predicting the nucleation of defects, and being a very useful tool for the design of semiconductor device
An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods
We determine the carbon balance of Russia, including Ukraine, Belarus and Kazakhstan using inventory based, eddy covariance, Dynamic Global Vegetation Models (DGVM), and inversion methods. Our current best estimate of the net biosphere to atmosphere flux is -0.66 Pg C yr-1. This sink is primarily caused by forests that using two independent methods are estimated to take up -0.69 Pg C yr-1. Using inverse models yields an average net biosphere to atmosphere flux of the same value with a interannual variability of 35%. The total estimated biosphere to atmosphere flux from eddy covariance observations over a limited number of sites amounts to -1 Pg C yr-1. Fires emit 137 to 121 Tg C yr-1 using two different methods. The interannual variability of fire emissions is large, up to a factor 0.5 to 3. Smaller fluxes to the ocean and inland lakes, trade are also accounted for. Our best estimate for the Russian net biosphere to atmosphere flux then amounts to -659 Tg C yr-1 as the average of the inverse models of -653 Tg C yr-1, bottom up -563 Tg C yr-1 and the independent landscape approach of -761 Tg C yr-1. These three methods agree well within their error bounds, so there is good consistency between bottom up and top down methods. The best estimate of the net land to atmosphere flux, including the fossil fuel emissions is -145 to -73 Tg C yr-1.
Estimated methane emissions vary considerably with one inventory-based estimate providing a net land to atmosphere flux of 12.6 Tg C-CH4yr-1 and an independent model estimate for the boreal and Arctic zones of Eurasia of 27.6 Tg C-CH4yr-1
Nearby low-mass triple system GJ795
We report the results of our optical speckle-interferometric observations of
the nearby triple system GJ795 performed with the 6-m BTA telescope with
diffraction-limited angular resolution. The three components of the system were
optically resolved for the first time. Position measurements allowed us to
determine the elements of the inner orbit of the triple system. We use the
measured magnitude differences to estimate the absolute magnitudes and spectral
types of the components of the triple: =7.310.08,
=8.660.10, =8.420.10, K5,
K9, K8. The total mass of the system is
equal to =1.69. We show
GJ795 to be a hierarchical triple system which satisfies the empirical
stability criteria.Comment: 6 pages, 2 figures, published in Astrophysical Bulleti
The EMCCD-Based Speckle Interferometer of the BTA 6-m Telescope: Description and First Results
The description is given for the speckle interferometer of the BTA 6-m
telescope of the SAO RAS based on a new detector with an electron
multiplication CCD. The main components of the instrument are microscope
objectives, interference filters and atmospheric dispersion correction prisms.
The PhotonMAX-512B CCD camera using a back-illuminated CCD97 allows up to 20
speckle images (with 512512 pix resolution) per second storage on the
hard drive. Due to high quantum efficiency (93% in the maximum at 550 nm), and
high transmission of its optical elements, the new camera can be used for
diffraction-limited (0.02) image reconstruction of stars under
good seeing conditions. The main advantages of the new system over the previous
generation BTA speckle interferometer are examined.Comment: 18 pages, 14 figure
- …