61 research outputs found

    Current oscillations in Vanadium Dioxide: evidence for electrically triggered percolation avalanches

    Full text link
    In this work, we experimentally and theoretically explore voltage controlled oscillations occurring in micro-beams of vanadium dioxide. These oscillations are a result of the reversible insulator to metal phase transition in vanadium dioxide. Examining the structure of the observed oscillations in detail, we propose a modified percolative-avalanche model which allows for voltage-triggering. This model captures the periodicity and waveshape of the oscillations as well as several other key features. Importantly, our modeling shows that while temperature plays a critical role in the vanadium dioxide phase transition, electrically induced heating cannot act as the primary instigator of the oscillations in this configuration. This realization leads us to identify electric field as the most likely candidate for driving the phase transition

    “Officina degli Errori”: A Tinkering Experience in an Informal Environment

    Get PDF
    Since 2012 we have been working together with teachers to design, promote and deliver hands-on, self-directed and playful activities to engage children with STEM. The most powerful method we used is tinkering, which is a holistic way to engage people with STEM disciplines mixing them with art and combining hi-tech material with low-tech and recycled material. Knowledge is not simply transmitted from teacher to learner, but actively constructed by the mind (and the hands) of the learner. Constructionism (Papert 1980) suggested that learners are more likely to develop new insights and understandings while actively engaged in making an external artifact. This method supports the construction of knowledge within the context of building personally meaningful artifacts, and the more self-directed the work is the more meaningful the learning becomes. From 2014 we proposed to the pupils of our local community several workshops based on the activities originally developed by the Tinkering Studio. Our labs are now mature and ready to be brought in a larger arena. For this reason, in the past months (Oct-Dec 2017) we brought tinkering into the Museo del Patrimonio Industriale under the name of “Officina degli Errori”, a set of 4 tinkering activities in this informal environment. We engaged a group of 20 kids, from 6 to 12 years old, during 4 workshops held on Saturday afternoon in the conference area of the museum. We expect this successful test will open a new branch of activities in this museum that is already offering lessons and experiences to the pupils in the Bologna area. These experiences are democratically free of charge. Our idea is to offer a tinkering lab and a learning opportunity to the pupils, a fruitful form of training to the teachers and some guidance in the collection of materials

    Yielding and irreversible deformation below the microscale: Surface effects and non-mean-field plastic avalanches

    Get PDF
    Nanoindentation techniques recently developed to measure the mechanical response of crystals under external loading conditions reveal new phenomena upon decreasing sample size below the microscale. At small length scales, material resistance to irreversible deformation depends on sample morphology. Here we study the mechanisms of yield and plastic flow in inherently small crystals under uniaxial compression. Discrete structural rearrangements emerge as series of abrupt discontinuities in stress-strain curves. We obtain the theoretical dependence of the yield stress on system size and geometry and elucidate the statistical properties of plastic deformation at such scales. Our results show that the absence of dislocation storage leads to crucial effects on the statistics of plastic events, ultimately affecting the universal scaling behavior observed at larger scales.Comment: Supporting Videos available at http://dx.plos.org/10.1371/journal.pone.002041

    Ultrafast insulator-to-metal phase transition as a switch to measure the spectrogram of a supercontinuum light pulse

    Get PDF
    In this letter we demonstrate the possibility to determine the temporal and spectral structure (spectrogram) of a complex light pulse exploiting the ultrafast switching character of a nonthermal photoinduced phase transition. As a proof, we use a VO2 multifilm, undergoing an ultrafast insulator-to-metal phase transition when excited by femtosecond near-infrared laser pulses. The abrupt variation in the multifilm optical properties, over a broad infrared/visible frequency range, is exploited to determine, in situ and in a simple way, the spectrogram of a supercontinuum pulse produced by a photonic crystal fiber. The determination of the structure of the pulse is mandatory to develop pump-probe experiments with frequency resolution over a broad spectral range (700-1100 nm)

    Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals

    Get PDF
    Background: Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. Methodology/Principal Findings: By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell’s law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Conclusions/Significance: Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or fo

    Surface Plasmon Resonance Sensing Detection of Mercury and Lead Ions Based on Conducting Polymer Composite

    Get PDF
    A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb2+ and Hg2+ ions. The Pb2+ ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb2+ compared to Hg2+. The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system

    Non-Invasive Microstructure and Morphology Investigation of the Mouse Lung: Qualitative Description and Quantitative Measurement

    Get PDF
    BACKGROUND: Early detection of lung cancer is known to improve the chances of successful treatment. However, lungs are soft tissues with complex three-dimensional configuration. Conventional X-ray imaging is based purely on absorption resulting in very low contrast when imaging soft tissues without contrast agents. It is difficult to obtain adequate information of lung lesions from conventional X-ray imaging. METHODS: In this study, a recently emerged imaging technique, in-line X-ray phase contrast imaging (IL-XPCI) was used. This powerful technique enabled high-resolution investigations of soft tissues without contrast agents. We applied IL-XPCI to observe the lungs in an intact mouse for the purpose of defining quantitatively the micro-structures in lung. FINDINGS: The three-dimensional model of the lung was successfully established, which provided an excellent view of lung airways. We highlighted the use of IL-XPCI in the visualization and assessment of alveoli which had rarely been studied in three dimensions (3D). The precise view of individual alveolus was achieved. The morphological parameters, such as diameter and alveolar surface area were measured. These parameters were of great importance in the diagnosis of diseases related to alveolus and alveolar scar. CONCLUSION: Our results indicated that IL-XPCI had the ability to represent complex anatomical structures in lung. This offered a new perspective on the diagnosis of respiratory disease and may guide future work in the study of respiratory mechanism on the alveoli level

    Surface Modifications by Field Induced Diffusion

    Get PDF
    By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant) and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages
    corecore