102 research outputs found
Non-commutative Schur-Horn theorems and extended majorization for Hermitian matrices
Let A ⊆ Mn(C) be a unital ∗-subalgebra of the algebra Mn(C) of all n×n complex matrices and let B be an hermitian matrix. Let Un(B) denote the unitary orbit of B in Mn(C) and let EA denote the trace preserving conditional expectation onto A. We give a spectral characterization of the set EA(Un(B)) = {EA(U ∗B U) : U ∈ Mn(C), unitary matrix}. We obtain a similar result for the contractive orbit of a positive semi-definite matrix B. We then use these results to extend the notions of majorization and submajorization between self-adjoint matrices to spectral relations that come together with extended (non-commutative) Schur-Horn type theorems.Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentin
Refinements of spectral resolutions and modelling of operators in II1 factors
We study refinements between spectral resolutions in an arbitrary II1 factor M and obtain diffuse (maximal) refinements of spectral resolutions. We construct models of operators with respect to diffuse spectral resolutions. As an application we obtain new characterizations of sub-majorization and spectral preorder between positive operators in M and new versions of some known inequalities involving these preorders.Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentin
Non-commutative Schur-Horn theorems and extended majorization for Hermitian matrices
Let A ⊆ Mn(C) be a unital ∗-subalgebra of the algebra Mn(C) of all n×n complex matrices and let B be an hermitian matrix. Let Un(B) denote the unitary orbit of B in Mn(C) and let EA denote the trace preserving conditional expectation onto A. We give a spectral characterization of the set EA(Un(B)) = {EA(U ∗B U) : U ∈ Mn(C), unitary matrix}. We obtain a similar result for the contractive orbit of a positive semi-definite matrix B. We then use these results to extend the notions of majorization and submajorization between self-adjoint matrices to spectral relations that come together with extended (non-commutative) Schur-Horn type theorems.Facultad de Ciencias Exacta
Refinements of spectral resolutions and modelling of operators in II<SUB>1</SUB> factors
We study refinements between spectral resolutions in an arbitrary II1 factor M and obtain diffuse (maximal) refinements of spectral resolutions. We construct models of operators with respect to diffuse spectral resolutions. As an application we obtain new characterizations of sub-majorization and spectral preorder between positive operators in M and new versions of some known inequalities involving these preorders.Facultad de Ciencias Exacta
Robust dual reconstruction systems and fusion frames
We study the duality of reconstruction systems, which are g-frames in a finite dimensional setting. These systems allow redundant linear encoding-decoding schemes implemented by the so-called dual reconstruction systems. We are particularly interested in the projective reconstruction systems that are the analogue of fusion frames in this context. Thus, we focus on dual systems of a fixed projective system that are optimal with respect to erasures of the reconstruction system coefficients involved in the decoding process. We consider two different measures of the reconstruction error in a blind reconstruction algorithm. We also study the projective reconstruction system that best approximate an arbitrary reconstruction system, based on some well known results in matrix theory. Finally, we present a family of examples in which the problem of existence of a dual projective system of a reconstruction system of this type is considered.Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentin
Jensen's inequality for spectral order and submajorization
Let A be a C*-algebra and φ{symbol} : A → L (H) be a positive unital map. Then, for a convex function f : I → R defined on some open interval and a self-adjoint element a ∈ A whose spectrum lies in I, we obtain a Jensen's-type inequality f (φ{symbol} (a)) ≤ φ{symbol} (f (a)) where ≤ denotes an operator preorder (usual order, spectral preorder, majorization) and depends on the class of convex functions considered, i.e., monotone convex or arbitrary convex functions. Some extensions of Jensen's-type inequalities to the multi-variable case are considered.Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Stojanoff, Demetrio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentin
Duality in reconstruction systems
We consider reconstruction systems (RS's), which are G-frames in a finite dimensional setting, and that includes the fusion frames as projective RS's. We describe the spectral picture of the set of RS operators for the projective systems with fixed weights. We also introduce a functional defined on dual pairs of RS's, called the joint potential, and study the structure of the minimizers of this functional. In the case of irreducible RS's the minimizers are characterize as the tight systems. In the general case we give spectral and geometric characterizations of the minimizers of the joint potential. At the end of the paper we show several examples that illustrate our results.Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Ruiz, Mariano Andres. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Stojanoff, Demetrio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentin
A contractive version of a Schur–Horn theorem in II1 factors
We prove a contractive version of the Schur–Horn theorem for submajorization in II1 factors that complements some previous results on the Schur–Horn theorem within this context. We obtain a reformulation of a conjecture of Arveson and Kadison regarding a strong version of the Schur–Horn theorem in II1 factors in terms of submajorization and contractive orbits of positive operators.Fil: Argerami, Martin. University of Regina; CanadáFil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentin
Generalized Schur complements and P-complementable operators
Let A be a selfadjoint operator and P be an orthogonal projection both operating on a Hilbert space script H sign. We say that A is P-complementable if A-μP≥0 holds for some μ∈R. In this case we define I P(A)=max{μ∈R:A-μP≥0}. As a tool for computing I P(A) we introduce a natural generalization of the Schur complement or shorted operator of A to script S sign=R(P), denoted by Σ(A,P). We give expressions and a characterization for I P(A) that generalize some known results for particular choices of P. We also study some aspects of the shorted operator Σ(A,P) for P-complementable A, under the hypothesis of compatibility of the pair (A,script S sign). We give some applications in the finite dimensional context.Facultad de Ciencias Exacta
Towards the Carpenter's theorem
Let M be a II1 factor with trace τ, A ⊆ Ma masa and EA the unique conditional expectation onto A. Under some technical assumptions on the inclusion A⊆M, which hold true for any semiregular masa of a separable factor, we show that for elements a in certain dense families of the positive part of the unit ball of A, it is possible to find a projection p ∈ M such that EA(p) = a. This shows a new family of instances of a conjecture by Kadison, the so-called "carpenter's theorem".Facultad de Ciencias Exacta
- …