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Abstract. We prove a contractive version of the Schur-Horn theorem for

submajorization in II1 factors that complements some previous results on the

Schur-Horn theorem within this context. We obtain a reformulation of a con-
jecture of Arveson and Kadison regarding a strong version of the Schur-Horn

theorem in II1 factors in terms of submajorization and contractive orbits of

positive operators.

1. Introduction

Vector and matrix majorization theory play an important role in matrix analysis,
mostly as a tool in the study of general (convex) inequalities, unitarily invariant
norm inequalities, geometry, and problems related with the description of the di-
agonals of matrix representations of a linear operator [1, 2, 4, 12]. Some historical
aspects of the theory of majorization are mentioned in [3, 5]. The Schur-Horn theo-
rem, coined in the papers [8, 15], is probably the most remarkable among the many
characterizations known for these notions (see the precise statement of the theorem
after Proposition 2.3). It is thus natural to search for analogues of this result in
contexts where majorization theory has been extended [5, 6, 7, 10, 13]. Among
these analogues let us mention the work of Neumann [13] for selfadjoint operators
in B(H), the refinements of Kadison [11] in the case of projectors in B(H), and the
recent work [5].

The fact that II1 factors share many structural properties with the algebra of
linear operators acting on Cn makes them a natural context in which to extend
majorization. In [5], Arveson and Kadison posed a (strong) version of the Schur-
Horn theorem for II1 factors as a problem and proved related results. As a first
step toward settling the Arveson-Kadison problem, the authors have proven in [3]
a weaker version, related with the point of view developed in [13]. In this note we
obtain a weak contractive version of submajorization within II1 factors in the spirit
of [3] (Theorem 3.4). We also obtain an equivalent reformulation of the Arveson-
Kadison problem (Theorem 4.1) using a characterization of spectral dominance and
submajorization (Proposition 3.1).

2000 Mathematics Subject Classification. Primary 46L99, Secondary 46L55.
Key words and phrases. Majorization, submajorization, contractive orbits, Schur-Horn

theorem.
M. Argerami supported in part by the Natural Sciences and Engineering Research Council of

Canada.
P. Massey supported in part by Consejo Nacional de Investigaciones Cient́ıficas y Técnicas of

Argentina and PIMS of Canada.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/158827810?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 M. ARGERAMI AND P. MASSEY

2. Preliminaries

Throughout the paper M denotes a II1 factor with normalized faithful normal
trace τ . We denote by Msa, M+, UM, the sets of selfadjoint, positive, and unitary
elements of M. Given a ∈Msa we denote its spectral measure by pa. The charac-
teristic function of the set ∆ is denoted by 1∆. We denote integration with respect
to Lebesgue measure by dt.

Besides the usual operator norm in M, we consider the Schatten norm induced
by the trace, ‖x‖1 = τ(|x|). As we will be always dealing with bounded sets in a
II1 factor, we can profit from the fact that the topology induced by the Schatten
norm agrees with the σ-strong operator topology. Because of this we will express
our results in terms of σ-strong closures although our computations are based on
estimates for the Schatten norm. For X ⊂ M, we shall denote by X and X

σ-sot

the respective closures in the norm topology and in the σ-strong operator topology.
For any set K, coK denotes its convex hull.

2.1. Spectral scale and spectral preorders. The spectral scale [14] of a ∈Msa

is defined by

λa(t) = min{s ∈ R : τ(pa(s,∞)) ≤ t}, t ∈ [0, 1).

The function λa : [0, 1) → R is non-increasing and right-continuous. The map
a 7→ λa is continuous both with respect to ‖ · ‖ and ‖ · ‖1 , since [14]

(1) ‖λa − λb‖∞ ≤ ‖a− b‖, ‖λa − λb‖1 ≤ ‖a− b‖1 a, b ∈Msa,

where the norms on the left are those of L∞([0, 1], dt) and L1([0, 1], dt) respectively.
A useful property of the spectral scale is that we can use it to recover the trace, in
the following sense:

(2) τ(a) =
∫ 1

0

λa(t) dt.

The unitary orbit of a ∈ Msa is the set UM(a) = {u∗au : u ∈ UM}. It is
straightforward from the definition of the spectral scale that if b ∈ UM(a), then
λa = λb. By the continuity (1), λb = λa for any b in the ‖ · ‖1 -closure or the
‖ · ‖-closure of the unitary orbit of a ∈Msa. A converse of this fact was proven by
Kamei. We summarize this information for future reference:

Theorem 2.1 ([9]). If a ∈Msa, then

UM(a) = UM(a)
σ-sot

= {b ∈Msa : λa = λb}.

Let a, b ∈ Msa. We say that a is spectrally dominated by b, written a - b, if
any of the following (equivalent) statements holds:

(i) λa(t) ≤ λb(t), for all t ∈ [0, 1].
(ii) τ(pa(t,∞)) ≤ τ(pb(t,∞)), for all t.

We say that a is submajorized by b, written a ≺w b, if∫ s

0

λa(t) dt ≤
∫ s

0

λb(t) dt, for every s ∈ [0, 1).

If in addition τ(a) = τ(b) then we say that a is majorized by b, written a ≺ b.

Remark 2.2. Let a, b ∈Msa. It is known [14] that
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(i) if a ≤ b then a - b. Thus, using this and (2),

a ≤ b ⇒ a - b ⇒ a ≺w b ⇒ τ(a) ≤ τ(b);

(ii) if v ∈M is a contraction (‖v‖ ≤ 1) then v∗av - a.

If N ⊂M is a von Neumann subalgebra and b ∈Msa, we denote by ΩN (b) and
ΘN (b) the sets of elements inN sa that are respectively majorized and submajorized
by b, i.e.

ΩN (b) = {a ∈ N sa : a ≺ b}, ΘN (b) = {a ∈ N sa : a ≺w b}.

The following result was proven in [3].

Proposition 2.3. Let b ∈ Bsa, where B ⊂ M is a diffuse abelian von Neumann
subalgebra. Then there exists a spectral resolution {e(t)}t∈[0,1] ⊂ B with τ(e(t)) = t
for every t ∈ [0, 1], and such that

b =
∫ 1

0

λb(t) de(t).

The classical Schur-Horn theorem states that if N is a type In factor, D ⊂ N is
a masa, ED is the canonical projection onto D, and b ∈ N sa, then

ED(UN (b)) = ΩD(b).

In [3], the authors proved the following related result for II1 factors.

Theorem 2.4. Let A ⊂ M be a diffuse abelian von Neumann subalgebra and let
b ∈Msa. Then

(3) EA(UM(b))
σ-sot

= ΩA(b).

3. A contractive version of the Schur-Horn theorem

Given x ∈M we shall consider its contractive orbit CM(x), namely

CM(x) := {v∗xv : v ∈M, ‖v‖ ≤ 1}.

Using the results quoted in Section 2, we prove the following characterization of
submajorization and spectral dominance.

Proposition 3.1. Let a, b ∈M+. Then
(i) a ≺w b if and only if there exists c ∈ M+ such that a ≺ c ≤ b. Moreover,

if B ⊂ M is a diffuse abelian von Neumann subalgebra such that b ∈ B+,
we can choose c ∈ B+.

(ii) a - b if and only if a ∈ CM(b).

Proof. (i) Assume first that a ≺w b and, without loss of generality, assume that
b ∈ B for a diffuse abelian subalgebra B ⊆ M. Let {e(t)}t∈[0,1] ⊆ B be a spectral
resolution as in Proposition 2.3. Since the function g(s) :=

∫ s

0
λb(t) dt is continuous

and a ≺w b, there exists s0 ∈ [0, 1] such that τ(a) = g(s0). Thus, if we let
c =

∫ s0

0
λb(t) de(t), it is straightforward to verify that λc(t) = 1[0,s0] λb(t) for

t ∈ [0, 1). From this it follows that a ≺ c. It is also clear that c ∈ B and that c ≤ b.
Conversely, if there exists c ∈ M+ such that a ≺ c ≤ b, then a ≺w c and c ≺w b,
and so by transitivity we get a ≺w b.
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(ii) Let a, b ∈M+ with a - b. Let B be a diffuse abelian subalgebra with b ∈ B,
and let {e(t)}t∈[0,1] ⊆ B be as before. By hypothesis 0 ≤ λa ≤ λb, so in particular
{λb = 0} ⊆ {λa = 0}. Thus the function f = 1{λb 6=0} · λa/λb is well defined,
0 ≤ f ≤ 1, and f ·λb = λa. Therefore v =

∫ 1

0
f(t)1/2 de(t) ∈ B is a contraction such

that

v∗bv =
∫ 1

0

λa(t) de(t) and thus λv∗bv = λa.

By Theorem 2.1 it follows that a ∈ UM(v∗ b v) ⊂ CM(b). To see the converse, let
a ∈ CM(b). Then a - b since, by (ii) in Remark 2.2, v∗bv - b for any contraction
v ∈ M, and by (1) the spectral scale is uniformly continuous with respect to the
operator norm. �

In [6, Theorem 3.1], Hiai shows that {a ∈ M : a - b} = CM(b)
σ-sot

. So, from
Proposition 3.1, we obtain

Corollary 3.2. If b ∈M, then CM(b)
σ-sot

= CM(b).

Lemma 3.3. Let N ⊂ M be a von Neumann subalgebra and let EN be the trace
preserving conditional expectation onto N . Then, for any b ∈M+,

(i) ‖EN (b)‖1 ≤ ‖b‖1 .

(ii) EN (CM(b))
σ-sot

⊂ ΘN (b) ∩N+.

Proof. (i) is proved in [3]. To see (ii) note that by Remark 2.2, for every v ∈ M
such that ‖v‖ ≤ 1, v∗bv - b; by Theorem 2.2. in [3], EN (v∗bv) ≺ v∗bv. So
by transitivity EN (v∗bv) ∈ ΘN (b) ∩ N+. If (an)n∈N ⊂ EN (CM(b)) is such that
limn→∞ ‖an − a‖1 = 0 for some a ∈ N , then necessarily a ∈ N+. By the previous
argument we have that an ≺w b for every n. Therefore, by (1),∫ s

0

λa(t) dt = lim
n→∞

∫ s

0

λan
(t) dt ≤

∫ s

0

λb(t) dt,

and so a ≺w b. �

Next we prove our main result, which complements Theorem 2.4 in the case of
sub-majorization and contractive orbits.

Theorem 3.4. Let A ⊂ M be a diffuse abelian von Neumann subalgebra of M
and let b ∈M+. Then

(4) EA(CM(b))
σ-sot

= ΘA(b) ∩ A+.

Proof. By (ii) in Lemma 3.3, EA(CM(b))
σ-sot

⊂ ΘA(b) ∩ A+. To prove the other
inclusion, let a ∈ A+ be such that a ≺w b. By (i) in Proposition 3.1 there exists
c ∈M+ such that a ≺ c ≤ b. By Theorem 2.4,

(5) a ∈ EA(UM(c))
σ-sot

.

Note that, since c ≤ b, c - b (Remark 2.2). Thus, by (ii) in Proposition 3.1,

(6) c ∈ CM(b).
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Let ε > 0. By (5) and (6) there exist u ∈ UM and a contraction v ∈ M such that
‖a− EA(u∗c u)‖1 ≤ ε and ‖c− v∗bv‖ ≤ ε. Therefore

‖EA(u∗c u)− EA((vu)∗b (vu))‖1 = ‖EA(u∗(c− v∗b v) u)‖1 ≤ ε,

since ‖x‖1 ≤ ‖x‖ and EA ◦Adu is a ‖ · ‖1 -contraction (Lemma 3.3). Thus

‖a− EA((vu)∗b (vu))‖1 ≤ ‖a− EA(u∗c u)‖1
+ ‖EA(u∗c u)− EA((vu)∗b (vu))‖1

≤ 2 ε.

As ε was arbitrary, we get a ∈ EA(CM(b))
σ-sot

, as desired. �

Corollary 3.5. For each b ∈M+, the set EA(CM(b))
σ-sot

is convex and σ-weakly
compact.

Proof. By (3) in Theorem 2.5 of [6],

(7) ΘM(b) = co(CM(b))
σ-sot

.

The right-hand side is bounded, convex, and σ-strongly closed, so it is σ-weakly
closed and thus compact. Then

ΘA(b) ∩ A+ = ΘM(b) ∩ A+ = co(CM(b))
σ-sot

∩ A+

is convex and σ-weakly compact. By Theorem 3.4, we are done. �

Remark 3.6. For any b ∈ M+, the property of EA(CM(b))
σ-sot

being convex is
essentially equivalent to Theorem 3.4. Indeed, assuming EA(CM(b))

σ-sot
to be

convex and using (7),

ΘA(b) ∩ A+ ⊂ EA

(
co(CM(b))

σ-sot
)
⊂ EA (co(CM(b)))

σ-sot

= coEA ((CM(b)))
σ-sot

= EA(CM(b))
σ-sot

,

where we have used that EA is ‖ ·‖1 -continuous (by (i) in Lemma 3.3). The reverse
inclusion is given by (ii) in Lemma 3.3.

4. A reformulation of the Arveson-Kadison problem

Let A ⊂ M be a masa and b ∈ M+. In [5], Arveson and Kadison pose the
problem of whether

(8) EA(UM(b)) = ΩA(b).

Similarly, with regard to the results of the present paper, it is natural to ask whether

(9) EA(CM(b)) = ΘA(b) ∩ A+.

It turns out that the two problems are equivalent, even in the broader class of
diffuse abelian subalgebras.

Theorem 4.1. Let A ⊂ M be a diffuse abelian subalgebra. Then the following
statements are equivalent:

(i) ∀ b ∈Msa, EA(UM(b)) = ΩA(b);
(ii) ∀ b ∈M+, EA(CM(b)) = ΘA(b) ∩ A+.
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Proof. Using arguments similar to those in Lemma 3.3 we can prove that for b ∈
Msa, EA(UM(b)) ⊂ ΩA(b). If b ∈ M+, using the norm-continuity of EA and
Lemma 3.3,

EA(CM(b)) ⊂ EA(CM(b)) ⊂ EA(CM(b))
σ-sot

⊂ ΘA(b) ∩ A+.

(i)⇒(ii). Let a ∈ ΘA(b) ∩ A+, b ∈ M+. Since A is diffuse and abelian, by
Proposition 2.3 there exists an spectral resolution of the identity {e(t)}t∈[0,1] ⊆ A
such that τ(e(t)) = t for t ∈ [0, 1] and such that a =

∫ 1

0
λa(t) de(t). Consider the

operator b′ =
∫ 1

0
λb(t) de(t). It is straightforward to verify that λb′ = λb so that, by

Theorem 2.1, UM(b) = UM(b′). From this last fact it follows that CM(b) = CM(b′),
and so after replacing b by b′ we can assume that b ∈ A. By Proposition 3.1 there
exists c ∈ A+ such that a ≺ c ≤ b and by hypothesis we get a ∈ EA(UM(c)).
Again by Proposition 3.1, since c ≤ b implies c - b, we get c ∈ CM(b). Then
UM(c) ⊂ CM(b), so we have a ∈ EA(CM(b)).

(ii)⇒(i). Let b ∈ Msa, a ∈ ΩA(b). Since λb+αI = λb + α, then a ≺ b if
and only if a + α ≺ b + α. Hence, ΩA(b + αI) = ΩA(b) + αI, and it is clear
that EA(UM(b + αI)) = EA(UM(b)) + αI. Thus, we can assume without loss of
generality that a, b ∈ M+. The following argument was inspired by the proof of
Theorem 4.1 in [5]. Since in particular a ∈ ΘA(b) ∩ A+, by hypothesis there exist
c ∈M+ and a sequence (vn)n∈N ⊂M with ‖vn‖ ≤ 1, n ∈ N, such that

(10) lim
n→∞

‖v∗n b vn − c‖ = 0 and EA(c) = a.

So τ(c) = τ(a) = τ(b). Let p = pb(0, ‖b‖].
Claim. limn→∞ ‖p− |v∗np| ‖1 = 0.
Since M is a finite factor, the partial isometry in the polar decomposition of v∗np

can be extended to a unitary un: so v∗np = un|v∗np|. Thus

‖v∗nbvn − unb u∗n‖1 = ‖v∗npb(v∗np)∗ − unb u∗n‖1

= ‖un|v∗np| b |v∗np|u∗n − unb u∗n‖1

= ‖ |v∗np| b |p v∗n| − b‖1

≤ ‖ (|v∗np| − p )b |v∗np| ‖1 + ‖ b (|v∗np| − p )‖1

≤ ‖|v∗np| − p‖1 ‖b |v∗np| ‖+ ‖b‖ ‖ |v∗np| − p ‖1

≤ 2 ‖b‖ ‖ |v∗np| − p ‖1 −→n 0.

By (10) and the inequalities above, limn ‖c−unb u∗n‖1 = 0, and so c ∈ UM(b)
σ-sot

.
Using Theorem 2.1,

a = EA(c) ∈ EA(UM(b)
σ-sot

) = EA(UM(b)).
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Proof of the claim: Since ‖vn‖ ≤ 1, p vnv∗np ≤ p, and so |v∗np| ≤ p. Then by
(10),

0 ≤ lim
n

τ((1− vnv∗n)b) = lim
n

τ(b− v∗nbvn)

= lim
n

τ(c− v∗nbvn) ≤ lim
n
‖c− v∗nbvn‖ = 0.

Let ε > 0. Since b(b + δ)−1 ↗ p strongly when δ → 0 and

0 ≤ τ((1− vnv∗n)(p− b(b + δ)−1)) ≤ τ(p− b(b + δ)−1),

we can choose δ such that τ((1 − vnv∗n)p) ≤ ε + τ((1 − vnv∗n)b(b + δ)−1) for every
n ∈ N. Then, choosing n such that τ((1− vnv∗n)b)) ≤ ‖(b + δ)−1‖−1 ε, we obtain

0 ≤ τ((1− vnv∗n)p) ≤ ε + τ((1− vnv∗n)b(b + δ)−1)

= ε + τ((1− vnv∗n)1/2 b1/2 (b + δ)−1 b1/2 (1− vnv∗n)1/2)

≤ ε + ‖(b + δ)−1‖ τ((1− vnv∗n)b) ≤ 2ε.

Therefore limn τ((1 − vnv∗n)p) = 0. For any x ∈ M+ with ‖x‖ ≤ 1, x − x2 =
x(1− x) = x1/2(1− x)x1/2 ≥ 0. Since ‖v∗np‖ ≤ 1, we conclude that |v∗np|2 ≤ |v∗np|,
and so

‖p− |v∗np| ‖1 = τ(p− |v∗np|) ≤ τ(p− |v∗np|2)
= τ(p− pvnv∗np) = τ((1− vnv∗n)p) → 0. �

We finish with the following remark concerning the relation between our main
result and the problem (9). The characterization in Theorem 3.4 of the positive
operators in a diffuse abelian subalgebra A majorized by a fixed b ∈M+ is weaker
than that posed in (9), since in general (using Corollary 3.2)

(11) EA(CM(b)) = EA(CM(b)
σ-sot

) ⊂ EA(CM(b))
σ-sot

.

By Theorems 3.4 and 4.1, an affirmative answer to the Arveson-Kadison problem
would imply equality in (11) and, conversely, equality in (11) would settle the
Arveson-Kadison problem affirmatively.
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