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TOWARDS THE CARPENTER’S THEOREM

MARTÍN ARGERAMI AND PEDRO MASSEY

(Communicated by Marius Junge)

ABSTRACT. Let A4 be a III factor with trace r, A Q Ad a masa and E^ the 
unique conditional expectation onto A. Under some technical assumptions on 
the inclusion A C Ad, which hold true for any semiregular masa of a separable 
factor, we show that for elements a in certain dense families of the positive 
part of the unit ball of A, it is possible to find a projection p E Ad such that 
E^(p) = a. This shows a new family of instances of a conjecture by Kadison, 
the so-called “carpenter’s theorem”.

1. Introduction

As is well-known, the Pythagorean Theorem (PT) states that the square of the 
norm of the sum of two orthogonal vectors is equal to the sum of the squares of the 
norms of each vector. A converse of the theorem would be the statement that if 
such an equality occurs, then the two vectors were orthogonal to begin with. Such 
a result allows a carpenter to check his right-angles by just measuring length, so 
that’s why PT’s converse is called the “carpenter’s theorem” (CT) by Kadison. In 
his work [4, 5], he considers extensions of PT and its corresponding converses CT 
to infinite dimension, getting to the unexpected and striking Theorem 15 in [5] 
(extended by Arveson in [2]). These generalizations of PT and CT are carried in
[4] to the realm of Ip factors, where the PT basically becomes tautological, and 
the CT becomes the following:

Conjecture (Kadison’s carpenter’s theorem). Let A be a masa of the Ip factor 
A4 and let a e A© Then there exists a projection p e P(A4) such that = a,
where E^ denotes the trace-preserving conditional expectation onto A.

In the finite dimensional case, the CT is a particular case of the well-known 
Schur-Horn theorem. Whether the Schur-Horn theorem extends or not to Ip factors 
is unknown at the moment (see [1, 3]). In this paper we focus on the CT in Ip 
factors. Assuming some restrictions on the factor and the masa, which hold true 
for semiregular masas in separable Ip factors, we show that the statement holds 
for various dense families. It is worth mentioning here that the statement of the 
CT (and also of Schur-Horn) is only meaningful in the case of masas, for this would
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3680 MARTÍN ARGERAMI AND PEDRO MASSEY

imply the result for any other abelian subalgebra, and also because both statements 
are likely to fail when the subalgebra considered is not abelian: indeed, CT does 
not hold for non-abelian subalgebras of M„(C), and so neither does Schur-Horn.

Although our results fail to settle the CT conjecture in full generality, our meth
ods lead us to consider a possible strategy for obtaining the CT under the conditions 
we consider for the inclusion A C Ad, as explained at the end of the paper. It is 
worth noting that these technical conditions hold true for inclusions A C Ad, where 
A is semiregular.

2. Preliminaries

Throughout the paper Ad denotes a II i factor with normalized faithful normal 
trace t. We denote by Adsa, Ad+, Um, the sets of selfadjoint, positive, and unitary 
elements of Ad. By P(Ad) we mean the set of projections of Ad. Given a G Adsa we 
denote its spectral measure by p“; thus, p“(A) is the spectral projection associated 
with a Borel set A C R. The characteristic function of the set A is denoted by 
XA and its Lebesgue measure by m(A). The unitary orbit of a G Adso is the set 
Uj^a} = {uau* : u G Um}-

In [4], Kadison conjectured that if Al C Ad is a masa and a, G A± i.e., a G A 
and 0 < a < 1, then there exists a projection p G P(Ad) such that = a- This
conjecture is equivalent to the following assertion: for p G P(Ad), a G A,

(1) 0 < a < l,r(a) = r(p) a, G EA{UM(p')')-

Using (1) it can be shown that Kadison’s conjecture is a particular case of a 
more general conjecture (a Schur-Horn theorem in Hi factors), which was stated as 
an open problem by Arveson and Kadison in [3]. In [1] we proved a weaker version 
of Arveson-Kadison’s conjecture, which restricted to the situation in (1) is

Theorem 2.1. Let A C Ad, a G A, p G P(Ad). Then

0 < a < 1, r(a) = r(p) a G XXXmX))

Note that in (1) the unitary orbit of the projection is already strongly closed 
(and so norm-closed, too), but the statement in Theorem 2.1 is weaker because it 
is not clear whether the set on the right-hand side of (1) is already closed in the 
strong operator topology (a fact that is actually equivalent to Kadison’s conjecture 
by Theorem 2.1).

Matrix units. Given a masa Al in Ad, we denote by A/q the normalizer of Al in 
Ad, i.e. the subgroup of Um given by

Xq. = {u G Um : u*Au = Al}.

The masa Al is said to be semiregular if (AGl)" is a factor, and regular (or Cartan) 
if (AGO" = Ad. Popa shows in [6, Proposition 3.6] that any semiregular masa in a 
separable type II factor is Cartan in a hyperfinite subfactor. His result implies the 
following:

Proposition 2.2. If Al C Ad is a semiregular masa in the separable Hi factor Ad, 
then for every k G N there exists {"( }; C AGt and {/>(}; C P(Al) such that 
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TOWARDS THE CARPENTER’S THEOREM 3681

where Vy = ukpk(uk~)*, is a 2fc-system of matrix units with vkj = pk G P(A) 
for j = 1,... ,2k and such that

(2) vk+\2._1+vk+1.=vk , l<i,j<2k, 

and such that the family {pk} generates all of A.

Matrix units can always be constructed in a II i factor, but the result in Propo
sition 2.2 allows one to make “coherent embeddings”, in a sense made precise in 
Corollary 2.3.

We denote by ’D(n) the diagonal subalgebra of M„(C) and by £A(n) : M„(C) —> 
’D(n) the diagonal compression. We also consider (j>k : Mp-. (C) —> M2t+i (C) to be 
the unital *-monomorphism o/I/l; = A. Denote by {ey} the canonical matrix 
units in M2t(C).

Corollary 2.3. Let {pk}, {vy} be as in Proposition 2.2. Define a family of *- 
monomorphisms tj, : M2t(C) —> M in the following way: for a = (ay) G M2t(C), 
let

^k(a) = aijvij-

•¿J
Then ^(e^) = pk for i = 1,..., 2fc, and 7rfc = 7rfc+1 o <f>k, o Ep(2fc) = Ey o nk, 
k G N.

For every k G N let {Ik}1=i denote the dyadic partition of [0,1] given by Ik = 
[(y - l)2~fe, 4 2~fe).

Remark 2.4. To each family { : k G N} C A as in Proposition 2.2 we
associate an operator x in the following way. It is easy to see that the sequence of 
(discrete) positive operators xk = 52i=1 pk G A is non-increasing and bounded. 
Let x = limgoT^fe G A+. Then, for every k G N and 0 < i < 2fc, px(Ik) = pk■ 
In particular, r o px is the Lebesgue measure restricted to [0,1]. We say that x 
is the associated operator to the family {p^}. Notice that the von Neumann 
subalgebra generated by x coincides with A, since the projections pk are Borel 
functional calculus of x G A.

3. Main results

Two subalgebras A, B C A4 are said to be orthogonal [7] in A4 if Ey(B) C CI.

Definition 3.1. We say that a masa A C A4 is totally complementable if 
for every projection p G A, the masa pA in pMp admits a diffuse orthogonal 
subalgebra.

In what follows we shall say that a G A4+ is discrete if there exists a sequence 
of mutually orthogonal projections {///,}/, : C A4 and a sequence of uniformly 
bounded complex numbers {o./ j / - such that a = 52/. ak qk (where the convergence 
is in the || • ||i-norm). Note that we can always assume that ak ey iik/ j.

Theorem 3.2 (Carpenter’s theorem for discrete operators). If A is a totally com
plementable masa in the Hi factor A4, then for every discrete a G (A)2 there exists 
a projection p G A4 such that Ey(p) = a.
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Proof. Assume B C M is a subalgebra orthogonal to A. For any a e [0,1], there 
exists a projection q e B with r(q) = a. Since A and B are orthogonal, Ejfq) =

= T(.q) = a.
Now let p e A be a projection; then pA is a masa in pMp, so it admits an 

orthogonal subalgebra Bp. By the first paragraph, there exists a projection q e 
Bp CpMp with Ep^q) = ap. Since q G pMp, in particular q = pq. So

Ea^Q) = EaM =pEA(q) = EpA{q) = ap.

Now let a = 52 A akPk e A, where is a sequence of mutually orthogonal
projections in M and l/o/j/,- is a sequence of uniformly bounded numbers such 
that Ofc y aj for k j. Since a e («4.)]1’, for each k e N we have that pk e A (since 
we can recover these projections as Borel functional calculus of a) and 0 < ak < 1. 
For each k e N apply the first part of the proof to get a projection qk € Af such 
that EA^qh) = akpk, Qk < Pk- Thus, the operator q = qk 6 M is a projection 
such that EA(q) =Y.kakPk- □

Remarks 3.3. (i) The conditions in Theorem 3.2 are satisfied by a Cartan
masa of the hyperfinite II i factor, and so by any semiregular masa in 
a separable II factor, since it is Cartan in an intermediate hyperfinite 
subfactor [6, Proposition 3.6].

(ii) Because in general there is no clear “coherent” way of constructing the 
projections qk in the previous proof, we would not expect such an argument 
to be useful to prove the general case of the carpenter’s theorem.

(iii) Under the conditions of Theorem 3.2, it follows in particular that there 
exists a projection p e A such that

Remarkably, it seems hard to prove even this particular case of Kadison’s 
conjecture in the general case of an arbitrary II factor and a masa A C Al.

In the remainder of the paper, given a semiregular masa A of the separable 111 
factor A4, we will prove the carpenter’s theorem for some non-discrete operators, 
namely piecewise linear functional calculus of x, the associated operator of a family 
of projections considered in Remark 2.4.

We begin by defining the following sequence of unitary matrices (IFn)n:

Lemma 3.4.

/I
o

0
1

0
1 0\

o
Wi = 0 0

\0 0 0 1/

W„+1 = Wn 0 h = (Wq pjQ = 0^1-

Let A & M2fc(C). Put A(l) = A, A(n + 1) = Wk+n-Ah ® 
Then there exists A < 1, independent of A, k and n such that

IIIA(n + 1) - h ® A(n)||| < A ||A(n) - J2 ® A(n - 1)|||.

Proof. Let k > 1 and n > 2. We can consider A(n — 1) as a block matrix with 2x2 
blocks, i.e. A(n — 1) = (Aijfj, where Atj e M2(C) for 1 < i, j < 2i:,i " It is 
easy to verify that

h ® A(n - 1) = (I2 ® Aijfj and A(n) = (W-tfh ® A^Wf)^ = (AijtZffj.
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So in particular we have that
+ 3)

(3) ||A(n)-I2®A(n-l)||| = HM(2) -12 ® Aj|.
i, 5=1

Similarly we see that A(n + 1) = (Aj(3))y, for 1 < i, j < 2k+n-3 and

+ 3)

(4) ||A(n+l)-I2®A(n)||| = ||A^(3) -12 ® A^(2)|||.
«,5 = 1

So, from (3) and (4) we see that it is enough to prove that there exists 0 < A < 1 
(independent of A, k and n) such that for every 1 < i, j' < 2fe+"-3,

2 ll^«j(3) — I“2 ® Aljj(2)||2 < A ||Ajj(2) — J2 ® Ajj||2.

We show that such an inequality holds for any 2x2 matrix B = (by)ij € M2(C). 
By straightforward computations,

/ b-44 — ^12

V2
612
V2 0\

— i>21 611+^22 611—^22 612

A4 2 2 V2

B(2) = Wi (I2 ® B) w; =
&21 ^11—^22 611 + ^22 612

A4 2 2 A4

l 0 &21
V2

&21
V2

b>22 /

and so

(5) ||B(2) - I2 ® B||| = (4 - 2V2XIM2 + IM2) + 1X1 - X2I2.

Thus, if we consider B(2) = (By)ij as a 2 x 2 block matrix, where By e M2(C), 
we can use the previous calculation with each of these four matrices and get

(6) |||B(3) - I, ® B(2)||l = |((4 - 2V2)(|fo1212 + |&21|2) + (| - M) |Xi - M2)- 

Writing | — -\/2 = 1 + (| — -/2) and using (5) and (6) we get that

1 ||B(3) — I2 0 B(2)||| 1 3 _ r-
2 IIMX ®B)Vf7-I2 x B||| - 2l 2 J '

□
In what follows we denote by the rank-one projections associated with

the elements of the canonical basis of C2/ that is, // = e/.

Lemma 3.5. Let n e N and A e M2s>(C). Then, with the notation of Lemma 3.4:

(i) Bp(2t+^)(A(n+l)) = Bp(2fe+^)(Wfc+„_1 (I2®Ep(2t+^-i)(A(n))) M+n-i)-
(ii) If A is diagonal and B = IVfc_1 A H / then

_ i An if i = 4h or i = 4h — 3,
M t (A4/l-l,4h-l + A4h-2,4h-2) ii i = 4h — 1 or i = 4h — 2.
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(iii) If Ep(2fc)(A) = then

2t-i2n-i

Ep(2i=+rl-i)(A(n)) = £ £ 7r,/i-i/2£_i)+2/l_i + 7r,/i/2£_i)+2/l ’
e=i h=i

where

h
ye,h = d^e-i + ¡- (d2r - ¿2r-i)-

Proof. To prove (i) let k, n > 1 and consider the block representations A(n) = 
(AjOijtTi 2’ where A? € M2(C). Then I2 ® A(n) = (I2 ® 2 and

A(n + 1) = wk+n-Ah ® M^Wk+n-i = (A A ® A4 WCT2

with respect to the previous block representation. Hence, to study the diagonal of 
A(n + 1) we can restrict our attention to the diagonal blocks W-y (I2 ® An) Pf e 
M4(C), for i = 1,..., " Straightforward computations show that

£©(4)(A (I2 ® An) W) = £©(4)(A Ep(4)(I2 ® An) W)

from which (i) follows, after noting that £44(4) (£2 ® B) = I2 ®£©(2)(-B) for any 
B e M2(C).

The proof of (ii) is straightforward.
We prove (iii) by induction. The case n = 1 follows from the definitions, and 

hence we omit it. Now, assume that (iii) holds for A(n). Then

2t-i 2*i-i

h®Ev^-^A{n)) = £ £
¿=1 h=l

+ y£,h I? ® f2^[£—l')^2h

2t-i 2n-i

EV ( fk+n 1 fk+n 1
/ > l£,h-l U(r-1)2**+! +4/1-3 4 (r-l)2Tl+1+4/i-2i

£=l h=l

4_ n / fk+n , rk+n 1
+ l£,h U(r-l)2’l+1+4/i-l 4 (r-l)2’l+1+4/ih

Using (ii) and the relations

_,n   .,n+l 1 Z.,n i .,n \   _,n+l
it,h — iiflh i 2 Wr,/i-l + it,h) —

we have
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Ep(2i=+n)(A(n + 1)) (^2 ® Evç2k+n-1)(A(n')y) W+n-l) 

2t-i2n-i

EV fk+n

¿=1 7i=l
i 1 ( ~,n | n \ fk+n

+ 2 7fe,h-i + 7e,h) J(£-i)2n+1+4h-2

i 1 t n | n \ yfe+n , n rk+n
+ 2 + ie,h) J (r—l)2T1+1+4/i—1 ~r l£,h J (r-l)2’*+1+4/i 

2t-i ^-1

E\ ' ~,n+l fk+n i n+1 rk+n
7 > A,2h-2 J (i-l)2’*+i+4/i-3_r 'i,2/1-1 J(i-l)2’*+1 +4/i-2 

£=1 h=l

i -,"+l j-fe+n i -,"+l fk+n
~T l£,2h-l -I (r-l)2’‘+1+4/i-l ^-'e,2h -I (i-l)2’*+1+4/i 

j ~ 1 j )
2-(fc-i) ’ 2_(fc_i) ] ’

2fc_1 2"
_ \ ' \ ' ^,"+1 fk+n | n+1 fk+n

/ > / > le,h-l J2n(e-l) + 2h-l ~r l£,h J2n(e-l) + 2h- 
e=i h=i

□ 

Theorem 3.6 (Carpenter’s theorem for some non-discrete operators). Let At be 
a separable II i factor and let x e A be the associated operator to a family {p^} 
of projections in a semiregular masa A in At. If A e M2t(C), then the sequence 
(cin)neN C M. given by eq = 7rfc(A) and

anpl = kpn (A(n T 1)) = 7Tfe-|_n( Wn-i-fe — 1) 71 fe_|_n(A(7z)) 7Tfcfc — 1) 

converges strongly to an operator a e Al. Moreover, we have that
(i) if A is a projector (resp. selfadjoint, positive), then so is a;

(ii) if Ajj = dj and / : [0,1] —> C is the piecewise linear function given by

/(t) = ¿2,7-1 + 2fc~1 (t - E—Q (.d2j - t e

; = 1,..., 2fcA then £4(0.) = TA
(iii) if B & M2k and b = lim„ 7rn+k^1(B(n')'), then \\b - a||| = ^||B - A|||. 

Proof. Using Corollary 2.3, Lemma 3.4 and the fact that if C e M2t(C) then 
lkfe+n_i(C)III = 2“^+n_1) ||C|||, we have

H&n+l ^nl^ — H^n ^n— 11|2

with 0 < A < 1, independent of A, k and n. Then the sequence {an} converges in 
|| • ||2 to an operator a e Al. We now prove the remaining items.

(i) If A is a projector (resp. selfadjoint, positive), then so is A(n), for each n. 
Since every 7in is a ^representation, 7rn+k_i(Al(n)) inherits the properties from A, 
and any of the three properties passes to the || • ||2-limit.

(ii) By Lemmas 2.3 and 3.5,
EA(®n) = EA(7rk+n^1(A(n))) = 7rk+n^1(Ev(2k+n-i)(A(n)))

2t-i 2*i-i 

E\ fe+n-1 4-*v" nfc+"~l/ > A,h-lP2n(£-l)+2h-l ' ie,hP2n(e-l'j + 2h-
£=1 h=l
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If we consider the discrete operators xn as defined in Remark 2.4, then
2fe+n-l

E' k >:1
2fe+n-l Pi

i=l
2fc-i2n~1

EE
£=1 h=l

2n(£-l) + 2h-l^k+n_1 , 2"(¿-f) + 2^fc+n_1
2fe+n-l P2^(£-l) + 2h-l + 2fc+n-i P2^(£-l)+2h'

It is easy to check that
£-1 2n(£-l) + 2h-l 2n(£-l) + 2h £
2^—1 — 2^, z/ < 2fe+”_1 < 2A’

and, if are as in the statement of Lemma 3.5, then

f

f

y?,h-l + ^(^26 - ¿26-1),

^,n

So

/ (xk+n— 1) E E G«-, + - *,)) /ÿyt+K-,
6=1 /l=l '

I ^Jn fe+n-1
+ 76,/i-li,2’l(6-l)+2/i

2fe-l2n-l

= ea^h)+e. yy ~ ^-^P2^e-i)+2k-i-

6=1 /i=l

Thus, letting d = max{dj} < ||A||,
2t-i 2*i-i

||£4M -f(^+n-l)ll = II E E F(^26 -d26-l)p2fc+(Xi) + 2/l-lll <
6=1 /i=l

Since an " "2> a, xn " "2> x, is normal, and / is continuous off a set of Lebesgue 

measure 0 (see Remark 2.4), we get E^an) " "2> E^a), f(xn) " "2> /(x), and so 
Ej^a) = f(x).

(iii) Note that ||I2 ® A||| = 2 ||A|||. Then we have

IPn+*-l(B(»)) - W-l ODIDIIi = 2„+\_i ITT) - ^(»llli

= JWFT llM''i+„-3(6 ® (B(1. - 1) - A(,. - 1» H-'i+„=II?

= 1) -.K»= Dlt 

= ¿ IIS -nil?.

By continuity,
\\b-a\\l = ^\\B-A\\l □
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The continuity property in (iii) suggests a possible strategy for solving Kadi- 
son’s conjecture in this setting: using the previous notation, let G A for

g G L°°([0,1]), 0 < g < 1, and for k G N, let gk = 'YA.=i9i,k Xik be a sequence of 
dyadic discrete functions, 0 < gk < 1, ^gk(t)dt = 2rkm{k') for some m{k') G N 
and such that it converges to g in L2([0,1]). Then, if we were able to construct a 
sequence of projection matrices Ak G A/2 o (C) such that 

(7)
IIAfc+i -I2g) AfclU
IIAk — d2 ® Afc-ilH < 1,

then, denoting by ak = limn 7T/i: ,, ( /I, we would have that

ak a, EA(ak) g(x)
k k

since by (7), would be a Cauchy sequence of projections in || • ||2. Hence a G
A/i would be a projection such that EA(a) = g(x) for an arbitrary g G L°°([0,1]), 
0<9< I-
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