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Abstract

We study the duality of reconstruction systems, which are g-frames in a finite di-

mensional setting. These systems allow redundant linear encoding-decoding schemes

implemented by the so-called dual reconstruction systems. We are particularly inter-

ested in the projective reconstruction systems that are the analogue of fusion frames

in this context. Thus, we focus on dual systems of a fixed projective system that are

optimal with respect to erasures of the reconstruction system coefficients involved in

the decoding process. We consider two different measures of the reconstruction error in

a blind reconstruction algorithm. We also study the projective reconstruction system

that best approximate an arbitrary reconstruction system, based on some well known

results in matrix theory. Finally, we present a family of examples in which the prob-

lem of existence of a dual projective system of a reconstruction system of this type is

considered.
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1 Introduction

Many researchers have recently studied the problem of designing finite frames for the re-
construction of a signal x in the absence of a number of (missing or delayed) coefficients
(see [4, 5, 6, 7, 11, 12, 15, 19]). In this context, the goal is to construct finite frames which
minimize the (blind) reconstruction error of a signal when a number k of frame coefficients
are “erased”.

In [14], the authors study the following problem: given a fixed frame F = {fi}mi=1 for
Cd, find the alternate dual frames that minimize a measure of the (blind) reconstruction
error when k frame coefficients are erased. Thus, unlike the previous setting, the interest
is centered in a subset of the set of alternate dual frames of a fixed frame. As they notice,
the canonical dual is not always the best choice despite the fact that it is associated to
the Moore-Penrose pseudoinverse. Nevertheless, one of the main results in [14] exhibits
conditions on the fixed frame F which assure that the only optimal dual of F - in the sense
previously described - is its canonical dual.

Our research is in the vein of [14] but our interest is to set it in the context of fusion frames.
However, since the definition of fusion frames depends strongly on the subspaces of the frame,
the concept of dual fusion frame is not easy to handle. Therefore, we identify fusion frames
with a subset of a broader class, namely the Reconstruction Systems (RS) (finite dimensional
g-frames, using the terminology of W. Sun [20]). Hence we fix a projective RS V (i.e. the
analogue of fusion frames in the context of RS’s), and we search for conditions that allow
us to describe the dual RS’s of V that minimize some measure of the (blind) reconstruction
error.

As in [14], our results show the existence of a unique dual RS (which is not necessarily
projective) that is optimal for the erasure of 1 packet of coefficients. As in previous works in
the subject, the error is measured in terms of the Frobenius norms of the so-called “packet
lost operators” (the equivalent notion of the error operators in [4, 11, 14]). We present two
different ways to perform this measure: the worst case error (WCE), i.e. the largest packet
lost operator norm among all possible erasures, and the 2-error which is the euclidean norm
of the vector of all packet lost operator norms. Each of these errors bound the norm of the
error when a vector x is reconstructed with a blind reconstruction strategy, assuming that a
frame coefficient is missing.

For the WCE, following the approach of Han and Lopez, we impose some conditions on
the norms involving the canonical dual elements to assure that the canonical dual is the
only optimal alternate dual for one erasure. For the 2-error we show that, for projective
RS’s, there is always a unique optimal dual. In both cases, our results include a detailed
description of the optimal dual RS.

The fact that the optimal alternate duals of the fixed projective RS V considered above
need not be projective motivates the study of best projective approximations of an arbitrary
RS. We consider this problem in terms of well known results in matrix theory.

On the other hand, assuming that the erased packets of coefficients correspond to a known
subset of indexes of the RS V, we find conditions which assure that the RS corresponding
to the remaining set of indexes is also a RS. Notice that this last fact allows to have perfect
reconstruction with suitable dual RS’s. We have included a section of examples in which we
also consider the problem of the existence of projective duals of a given projective RS.

In order to put our results in perspective and to keep the text self contained we have
reviewed some known results concerning the structure of optimal duals in the context of
fusion frames and g-frames, including short proofs in some cases. It is worth pointing out
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that some results in g-frames theory can be obtained from their analogues in frame theory,
using the fact that g-frames can be considered as groupings of vectors of a frame. We have
used this kind of argument whenever it was possible. Nevertheless, when an extra structure
is imposed to the RS’s new difficulties may arise; such is the case of projective RS’s (i.e. our
analogue of fusion frames), where there are orthogonal relations between subsets of vectors,
or injective RS’s. Indeed, as far as we know Theorem 7 is new even in the vector frame
setting. In addition, by the nature of its formulation, the approximation by projective RS’s
and the existence of projective dual RS’s of a fixed projective RS are intrinsic problems to
the RS’s setting.

The paper is organized as follows: In Section 2 we recall some basic facts about general
reconstruction systems and we fix some of the terminology used throughout the paper. In
Section 3 we study the optimal dual systems for erasures of vector coefficients. In Section 4
we consider the problem of perfect reconstruction when packets corresponding to a fixed set
of indices of a RS V are lost. In Section 5 we describe the projective RS which is nearest to a
fixed RS. In Section 6 we give several examples of group RS’s, and we consider the problems
of existence of projective dual RS’s of a given projective RS.

Notations.

Given H ∼= Cd and K ∼= Cn, we denote by L(H,K) the space of linear operators T : H → K.
Given an operator T ∈ L(H,K), R(T ) ⊆ K denotes the image of T , ker T ⊆ H the null
space of T and T ∗ ∈ L(K,H) the adjoint of T . If d ≤ n we say that U ∈ L(H,K) is an
isometry if U∗U = IH . In this case, U∗ is called a coisometry. We denote by I(d , n) the set
of all isometries in L(H,K).

If K = H we denote by L(H) = L(H , H), by Gl(H) the group of all invertible operators in
L(H), by L(H)+ the cone of positive operators and by Gl(H)+ = Gl(H) ∩ L(H)+.

If T ∈ L(H), we denote by σ(T ) the spectrum of T , by rk T the rank of T , and by tr T the
trace of T . Given m ∈ N we denote by Im = {1, . . . , m} ⊆ N and 1 = 1m ∈ Rm denotes the
vector with all its entries equal to 1.

On the other hand, Mn,m(C) denotes the space of complex n × m matrices. If n = m we
write Mn(C) = Mn,n(C), Gl (n) the group of all invertible elements of Mn(C), U(n) the
group of unitary matrices, Mn(C)

+ the set of positive semidefinite matrices, and Gl (n)+ =
Mn(C)

+ ∩ Gl (n).
If W ⊆ H is a subspace we denote by PW ∈ L(H)+ the orthogonal projection onto W , i.e.
R(PW ) = W and ker PW = W⊥. For vectors on Cn we shall use the euclidean norm, but for
matrices T ∈ Mn(C), we shall use both

1. The spectral norm ‖T‖ = ‖T‖sp = max
‖x‖=1

‖Tx‖.

2. The Frobenius norm ‖T‖
2
= (tr T ∗T )1/2 =

(
∑

i,j∈In
|Tij|2

)1/2
. This norm is induced by

the inner product 〈A, B〉 = tr B∗A , for A,B ∈ Mn(C).
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2 Basic framework of reconstruction systems

In what follows we consider (m,k, d)-reconstruction systems (see for example [15, 18, 20]),
which are more general linear systems than those considered in [3, 4, 5, 6, 11] and [16], that
also have an associated reconstruction algorithm.

Definition 1 Let m, d ∈ N and k = (k1 , . . . , km) ∈ Nm.

1. We denote by K = Km,k
def

=
⊕

i∈ Im
Cki . Sometimes we shall write each direct

summand by Ki = Cki .

2. Given a space H ∼= Cd we denote by L(m,k, d)
def
=
⊕

i∈Im L(H , Ki) ∼= L(H,K). A
typical element of L(m,k, d) is a system V = {Vi}i∈ Im such that each Vi ∈ L(H , Ki).

3. A family V = {Vi}i∈ Im ∈ L(m,k, d) is an (m,k, d)-reconstruction system (RS) for H if

SV
def

=
∑

i∈ Im
V ∗
i Vi ∈ Gl(H)+ ,

i.e., if SV is invertible and positive. SV is called the RS operator of V. In this case,
the m-tuple k = (k1 , . . . , km) ∈ Nm satisfies that trk

def

=
∑

i∈ Im
ki ≥ d.

4. The bounds of V as a RS are the numbers AV = λmin(SV) and BV = ‖SV‖sp . Observe
that

AV ‖x‖2 ≤ 〈SV x , x〉 =
∑

i∈ Im
‖Vi x‖2 ≤ BV ‖x‖2 for every x ∈ H .

5. We shall denote by RS(m,k, d) the set of all (m,k, d)-RS’s for H ∼= Cd.

6. The system V = {Vi}i∈ Im ∈ RS(m,k, d) is said to be injective if V ∗
i ∈ L(Ki , H) is

injective (equivalently, if Vi V
∗
i ∈ Gl(Ki) ) for every i ∈ Im .

We shall denote by RSI(m,k, d) the set of all injective elements of RS(m,k, d).

7. The system V is said to be projective if there exists a sequence v = (vi)i∈Im ∈ Rm
+ of

positive numbers, the weights of V, such that

Vi V
∗
i = v2i IKi

, for every i ∈ Im .

In this case, the following properties hold:

(a) The weights can be computed directly, since each vi = ‖Vi‖sp .

(b) Each Vi = viUi for a coisometry Ui ∈ L(H , Ki). Thus V
∗
i Vi = v2i PR(V ∗

i
) ∈ L(H)+

for every i ∈ Im .

(c) Observe that in this case SV =
∑

i∈ Im
v2i PR(V ∗

i
) as in fusion frame theory.

We shall denote by P(m,k, d) the set of all projective elements of RS(m,k, d).

8. The analysis operator of the system V is defined by

TV : H → K =
⊕

i∈ Im
Ki given by TV x = (V1 x , . . . , Vm x) , for x ∈ H .
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9. Its adjoint T ∗
V is called the synthesis operator of the system V, and it satisfies that

T ∗
V : K =

⊕

i∈ Im
Ki → H is given by T ∗

V
(

(yi)i∈ Im

)

=
∑

i∈ Im
V ∗
i yi .

Using the previous notations and definitions we have that SV = T ∗
V TV . △

Examples 2 (Vector and fusion frames as RS’s)

1. As it was mentioned earlier, RS’s arise from usual vector frames by grouping together the
elements of the frame. Therefore, it is natural to expect that in the case k = 1m , the set
RS(m,k, d) can be identified with the set of m-vector frames for H ∼= Cd.

Indeed, let F = {fi}i∈ Im ∈ Hm. For i ∈ Im consider Vi : H → C given by Vi(x) = 〈x, fi〉 for
every x ∈ H. Let VF = {Vi}i∈Im and notice that

SVF
=
∑

i∈Im
V ∗
i Vi =

∑

i∈Im
〈 · , fi〉 fi = SF .

Thus F is a frame for H if and only if VF ∈ RS(m,1, d). Actually, RS(m,1, d) = P(m,1, d)
because every functional is a multiple of a coisometry. Moreover, TVF

: H → ⊕i∈ ImC = Cm is
the usual analysis operator of F . On the other hand, it is clear that elements in RS(m,1, d)
correspond to vector frames for H.

2. Let Nw = (wi , Ni)i∈Im be a fusion frame for H ∼= Cd, with weights wi > 0 and subspaces
Ni ⊆ H with dimNi = ki for every i ∈ Im . Its fusion frame operator is

SNw
=
∑

i∈ Im

w2
i PNi

∈ Gl(H)+

(see [8, 9, 12] for detailed expositions of fusion frames). Let Ui ∈ L(H,Cki) be a coisometry

such that U∗
i Ui = PNi

, for every i ∈ Im . Therefore, the system V = {Vi}i∈Im
def

= {wi Ui}i∈Im
satisfies that SV = SNw

∈ Gl(H)+. Hence V ∈ P(m,k, d) is a projective RS associated to
Nw . Observe that V has the same weights as Nw and it also satisfies that each Ni = R(V ∗

i ).

Conversely, given V = {Vi}i∈ Im ∈ P(m,k, d), the sequence Nw =
(

‖Vi‖, R(V ∗
i )
)

i∈ Im
is a

fusion frame such that SV = SNw
. Nevertheless the correspondence is not one to one, since

any system of coisometries {Ui}i∈ Im with (kerUi)
⊥ = Ni produces the same fusion frame

Nw = (wi , Ni)i∈Im . This phenomenon is similar to the correspondence of vector frames with
one dimensional fusion frames. △

Remark 3 In what follows we list some properties and notations about RS’s :

1. Given V = {Vi}i∈ Im ∈ RS(m,k, d) with SV =
∑

i∈ Im
V ∗
i Vi , then

∑

i∈ Im

SV
−1 V ∗

i Vi = IH , and
∑

i∈ Im

V ∗
i Vi SV

−1 = IH . (1)

Therefore, we obtain the reconstruction formulas

x =
∑

i∈ Im

S−1
V V ∗

i (Vi x) =
∑

i∈ Im

V ∗
i Vi(S

−1
V x) for every x ∈ H .
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2. For every V = {Vi}i∈ Im ∈ RS(m,k, d), we define the system

V# def

= {Vi S
−1
V }i∈ Im ∈ RS(m,k, d) ,

called the canonical dual RS associated to V. By Eq. (1), we see that

T ∗
V# TV =

∑

i∈ Im

SV
−1 V ∗

i Vi = IH and SV# =
∑

i∈ Im

S−1
V V ∗

i Vi S
−1
V = S−1

V .

Next we generalize the notion of dual RS’s : △

Definition 4 Let V = {Vi}i∈ Im and W = {Wi}i∈ Im ∈ RS(m,k, d).

1. We say that W is a dual RS for V if T ∗
W TV = IH , or equivalently if

x =
∑

i∈ Im

W ∗
i Vi x for every x ∈ H .

2. We denote by D(V) def

= {W ∈ RS(m,k, d) : T ∗
W TV = IH }, the set of all dual RS’s for

a fixed V ∈ RS(m,k, d). Observe that D(V) 6= ∅ since V# ∈ D(V).
△

Remark 5 Let V ∈ RS(m,k, d). Then W ∈ D(V) if and only if its synthesis operator T ∗
W

is a pseudo-inverse of TV . Indeed, W ∈ D(V) ⇐⇒ T ∗
W TV = IH . Observe that the map

RS(m,k, d) ∋ W 7→ T ∗
W is one to one. Thus, in the context of RS’s each (m,k, d)-RS has

many duals that are (m,k, d)-RS’s. This is one of the advantages of the RS’s setting.

Moreover, the synthesis operator T ∗
V# of the canonical dual V# corresponds to the Moore-

Penrose pseudo-inverse of TV . Indeed, notice that TV T ∗
V# = TV S

−1
V T ∗

V ∈ L(K)+, so that it
is an orthogonal projection. From this point of view, V# has some optimal properties that
come from the theory of pseudo-inverses. △

3 Optimal erasures and errors

In coding theory, and using our terminology, a signal x ∈ Cd is transmitted encoded via
the RS V = {Vi}i∈ Im in the form of m packets {Vix}i∈Im . Then, the loss (or delay) of a
number of packets in transmission is treated as if the corresponding components in the RS
were “erased”. Assuming that a number of erasures occurred and taking into account the
redundancy of the RS, the reconstruction of the signal could be attempted using a dual
RS of V. The accuracy of this process can be quantified by the norm of an error operator.
For example, it is shown in [11] that uniform Parseval frames (together with their canonical
duals) are optimal for 1 erasures in the sense that they minimize a norm of the error operator.
The authors also prove that equiangular uniform Parseval frames are optimal for 2 erasures
(in case that such frames exist). In the context of Parseval fusion frames, Bodmann ([4])
shows that uniform Parseval fusion frames (a protocol associated to a uniformly weighted
projective resolution of the identity, using his terminology) are optimal for 1 erasure, when
the dimensions of the subspaces are equal. In addition, he shows that the uniform Parseval
protocols that are optimal for multiple erasures have subspaces satisfying the so-called equi-
isoclinic condition.
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Similar problems have also been considered in different contexts. For example, in [12]
the authors describe the structure of the optimal frames for one or multiple erasures, but
in a non-deterministic setting. Indeed, in this case a random vector x is estimated from its
fusion frame measurements using the Linear Minimum Mean Square Error.

As it was mentioned in the introduction, our aim is to set the problem studied in [14] in
the context of reconstruction systems. That is, given a fixed projective RS V, the goal is to
characterize optimal alternate duals for r erasures. As in [14], our results imply the existence
of a unique dual RS (which is not necessarily projective) that is optimal for the erasure of
1 packet of coefficients. Notice that in this context, optimal alternate duals for r erasures
among those duals which are optimal for r− 1 erasures (see [4, 5, 6, 11, 14, 15]). Therefore,
by the nature of our results, the optimal duals for r erasures coincide with optimal duals for
1 erasure.

In order to describe the different measures of the reconstruction error when an arbitrary
packet of coefficients of the fixed RS is erased, we consider the following notions. Given
j ∈ Im, let

Mj ∈ L(K) given by Mj

(

(yi)i∈ Im

)

=
(

1j (i) · yi
)

i∈ Im
,

where 1j : Im → {0, 1} denotes the characteristic function of the set {j} ⊂ Im . Similarly,

we consider the packet-lost operator Lj
def

= MIm\{j} = IK −Mj .

Given V = {Vi}i∈ Im ∈ RS(m,k, d), we shall consider a “blind reconstruction” strategy in
case that some coefficient is lost. That is, assuming that the encoded information TV x ∈ K
(for some x ∈ H) is altered according to the packet-lost operator Lj , our reconstructed
vector will be x̂ = T ∗

W Lj TV (x), where W = {Wi}i∈ Im ∈ D(V) is some dual RS for V. Then
the reconstruction error will be x− x̂ = x− T ∗

W Lj TV (x) = T ∗
W Mj TV (x) = W ∗

j Vj x.

In this case, we will use the Frobenius norm ‖ · ‖
2
to perform the measure of the operator

W ∗
j Vj . It is worth to note that, unlike the vector frame case, W ∗

j Vj is not necessary a rank-
one operator, so its operator (spectral) norm does not coincide with its Frobenius norm. We
consider that this is a suitable norm to perform the generalization of the results in [14] to the
RS setting, besides the fact that Frobenius norm has nice geometrical properties. Consider
the m-tuple

E1(V, W) = (‖I − T ∗
W Lj TV‖2

)j∈Im = (‖T ∗
W Mj TV‖2

)j∈Im =
(

‖W ∗
j Vj‖2

)

j∈Im ∈ R
m ,

Notice that we can bound uniformly the reconstruction error in terms of the entries of this
vector for the erasure of 1 packet of coefficients (for all m possible choices). In what follows
we shall consider two different measures of the reconstruction error based on E1(V, W),
namely the 2-error and the (normalized) worst-case error.

3.1 Minimizing the 2-error

Let V = {Vi}i∈ Im ∈ RS(m,k, d) and let us denote by

e
(2)
1 (V) = inf

W∈D(V)
‖E1(V, W)‖

2
= inf

W∈D(V)

(

∑

i∈Im
‖W ∗

i Vi‖22

)1/2

. (2)

We are interested in the characterization of those W ∈ D(V) such that ‖E1(V, W)‖
2
=

e
(2)
1 (V). In other words, we define the set of 1-loss optimal dual RS’s for V with respect to
‖E1(V, ·)‖2

as

D
(2)
1 (V) def

= {W ∈ D(V) : ‖E1(V, W)‖
2
= e

(2)
1 (V)} .
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One of the advantages of this measure of the error is that for a projective V, without any
further assumption, there is always only one dual RS in D

(2)
1 (V), and that this system can

be explicitely computed (see Theorem 7 and Remark 8). In particular, using the hierarchies
previously described, this dual will also be optimal for r erasures.

Remark 6 Fix V = {Vi}i∈ Im ∈ P(m,k, d) and W = {Wi}i∈ Im ∈ D(V). We give a matricial
interpretation of the 2-error ‖E1(V, W)‖

2
, for the sake of clarity. Recall that V , W ∈

L(m,k, d) =
⊕

i∈Im L(H , Ki). Hence they can be viewed as block m × 1 column vectors.
For example, this allows to obtain the equality I = T ∗

W TV =
∑

i∈Im W ∗
i Vi ; unfortunately

this identity does not allow us to compute the value of ‖E1(V, W)‖
2
.

On the other hand, the product TV T ∗
W =

∑

i, j∈Im Vi W
∗
j ∈ L(K) is an oblique projector, and

‖TV T ∗
W‖2

2
=
∑

i, j∈Im ‖ViW
∗
j ‖22 =

∑

i, j∈Im ‖W ∗
j Vi‖22 , since the blocks Vi W

∗
j ∈ L(Kj , Ki) are

the different “entries” of the m×m block matrix TV T ∗
W .

The norm ‖TV T ∗
W‖

2
is minimal for W = V# (since TV T ∗

V# is selfadjoint). Nevertheless,
the square of the 2-error ‖E1(V, W)‖2

2
=
∑

i∈Im ‖W ∗
i Vi‖22 is the square of the norm of

the pinching matrix (i.e., block diagonal truncation) of TV T ∗
W . As we shall see below, its

minimum among all W ∈ D(V) is not always attained at the Moore Penrose pseudoinverse
T ∗
V# (see Remark 10). △

Theorem 7 Let V = {Vi}i∈ Im ∈ P(m,k, d) with weights v = (vi)i∈Im. Then D
(2)
1 (V) =

{W0} i.e., there is a unique 1-loss optimal dual RS W0 for the 2-error. Moreover, if

1. D ∈ L(K) is the block diagonal matrix D =
⊕

i∈ Im

v−2
i IKi

, and

2. SV ,D = T ∗
V DTV =

∑

i∈ Im

PR(V ∗
i
) ∈ Gl(H)+ ( since SV ,D ≥ (min

i∈Im
v−2
i ) · SV > 0 ),

then the optimal system is W0 = {v−2
i Vi S

−1
V ,D}i∈ Im . In particular, TW0

= DTV S−1
V ,D .

Proof. First we check that W0 ∈ D(V). Indeed, T ∗
W0

TV = S−1
V ,D T ∗

V DTV = S−1
V ,D SV ,D = I.

Denote by Bi = v−2
i Vi S

−1
V ,D , the i-th entry of W0 , for every i ∈ Im . Consider a dual system

W = {Wi}i∈ Im ∈ D(V). Since each ViV
∗
i = v2i IKi

, then

‖W ∗
i Vi‖22 = tr(V ∗

i WiW
∗
i Vi) = tr(WiW

∗
i ViV

∗
i ) = v2i tr(WiW

∗
i ) = v2i ‖W ∗

i ‖22 . (3)

In particular, we can compute the 2-error for W0 :

‖E1(V , W0)‖2 =
∑

i∈ Im

‖B∗
i Vi‖22

(3)
=
∑

i∈ Im

v2i ‖B∗
i ‖22 =

∑

i∈ Im

v−2
i ‖S−1

V ,D V ∗
i ‖22 .

On the other hand, for every i ∈ Im we have

v2i ‖W ∗
i ‖22 = v2i ‖B∗

i + (W ∗
i − B∗

i )‖22
= v−2

i ‖S−1
V ,D V ∗

i ‖22 + v2i ‖W ∗
i − B∗

i ‖22 + 2Re
(

v2i tr
[

(W ∗
i − B∗

i )Bi

]

)

. (4)

Let ti = tr
[

(W ∗
i −B∗

i )Bi

]

= v−2
i tr

[

(W ∗
i − B∗

i ) Vi S
−1
V ,D

]

. Then we have that

∑

i∈ Im

v2i ti = tr
(

∑

i∈ Im

(W ∗
i − B∗

i ) Vi S
−1
V ,D

)

= tr
[

(T ∗
W − T ∗

W0
) TV S−1

V ,D

]

= 0 .
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since both W and V# are dual RS’s for V. Therefore, summing over Im , the third summand
of (4) vanishes and

‖E1(V , W)‖2 = ∑

i∈ Im

‖W ∗
i Vi‖22

(3)
=
∑

i∈ Im

v2i ‖W ∗
i ‖22

(4)
=
∑

i∈ Im

v−2
i ‖S−1

V ,D V ∗
i ‖22 + v2i ‖W ∗

i − B∗
i ‖22

≥ ∑

i∈ Im

v2i ‖B∗
i ‖22

(3)
= ‖E1(V , W0)‖2 .

(5)

Therefore W0 ∈ D
(2)
1 (V). Moreover, if we take another W = {Wi}i∈ Im ∈ D

(2)
1 (V), then Eq.

(5) implies that ‖W ∗
i −B∗

i ‖2
= 0 for every i ∈ Im , so that W = W0 . �

We say that a system V = {Vi}i∈ Im ∈ P(m,k, d) is an uniform projective RS if the weights
v = (vi)i∈Im of V satisfy that v = v 1 for some v > 0.

Remark 8 The unique 1-loss optimal dual RS of Theorem 7, denoted by W0 ∈ D
(2)
1 (V),

can be described in the following way: If v = (vi)i∈Im are the weights of the system V ∈
P(m,k, d), consider U = {Ui}i∈Im = {Vi

vi
}i∈Im , which is a uniform projective RS. Then

SV ,D =
∑

i∈ Im

PR(U∗
i
) = SU , V = v · U def

= {vi Ui}i∈Im and W0 = v−1 · U# , (6)

because W0 = {v−2
i Vi S

−1
V ,D}i∈ Im = {v−1

i Ui S
−1
U }i∈ Im . △

Corollary 9 Let V = {Vi}i∈ Im ∈ P(m,k, d). Assume that V is uniform. Then the unique
1-loss optimal dual RS for the 2-error is the canonical dual V#.

Proof. If the weights of V are v = v 1 then, with the notations of Remark 8, we have that
V = v U , SV = v2 SU and V# = v−1 U#. Then we apply Eq. (6). �

Remark 10 For most systems V = {Vi}i∈ Im ∈ P(m,k, d) which are not uniform, the unique
1-loss optimal dual RS for the 2-error W0 ∈ D(V) obtained in Theorem 7 does not coincide
with the canonical dual V#. For example, it is easy to see thatW0 6= V# if all the weights are
different and if the subspaces R(V ∗

i ) are not mutually orthogonal. In particular, W0 6= V#

whenever the weights are different and V has non zero redundancy. △

3.2 Minimizing the worst-case reconstruction error

Let V = {Vi}i∈ Im ∈ P(m,k, d). For each W = {Wi}i∈ Im ∈ D(V) , we introduce the worst-
case reconstruction error when one packet is lost with respect to the Frobenius norm. Now,
we measure the error vector E1(V, W) with the maximum of its entries, instead of the
euclidean norm used in the previous section.

e1(V) = inf
W∈D(V)

‖E1(V,W)‖
∞
= inf

W∈D(V)
max
i∈ Im

‖T ∗
W Mi TV‖2

= inf
W∈D(V)

max
i∈ Im

‖W ∗
i Vi‖2

. (7)
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We define the set of 1-loss optimal dual RS’s for V with respect to ‖E1(V, ·)‖∞
as

D1(V) def

= {W ∈ D(V) : ‖E1(V , W)‖
∞
= e1(V)} .

The study of D1(V) has been considered by Han and López in [14] in the particular case
of (m,1, d)-RS’s for H, i.e. usual vector frames. Indeed, since in such case the operators
i ∈ Im, T

∗
WMiTV are rank one operators, their Frobenius and spectral norms coincide, so the

WCE coincide with the measure of the error used in [14]. The use of the Frobenius norm
in the definition of the WCE allows to extend naturally the results in [14] to the RS setting
using similar techniques.

Remark 11 Recall that RS(m,k, d) ⊆ L(m,k, d) =
⊕

i∈Im L(H , Ki) ∼= L(H,K). If we fix
an injective V = {Vi}i∈ Im ∈ RSI(m,k, d), then the map ‖ · ‖V : L(m,k, d) → R+ given by

‖W‖V def

= ‖E1(V , W)‖
∞
= max

i∈ Im

‖W ∗
i Vi‖2

for W = {Wi}i∈ Im ∈ L(m,k, d)

is a norm in L(m,k, d). Indeed, the only non trivial condition is the faithfulness. But the
fact that V ∈ RSI(m,k, d) (i.e. Vi is surjective for every i ∈ Im) assures that ‖W‖V = 0 =⇒
‖W ∗

i Vi‖2
= 0 for every i ∈ Im =⇒ W = 0.

Since D(V) is closed in L(m,k, d) with the usual norm and all norms are equivalent on
L(m,k, d), then D(V) is ‖·‖V -closed in L(m,k, d). Therefore there exist elements W ∈ D(V)
such that ‖W‖V = min

N∈D(V)
‖N‖V = e1(V). Indeed, the intersection of D(V) with a fixed

closed ball is a compact set. On the other hand, D(V) is convex (actually it is an affine
manifold). Since every norm is a convex map, we have proved the following result: △

Proposition 12 Let V ∈ RSI(m,k, d) be an injective system. Then the set D1(V) of
1-loss optimal dual RS’s for V is non-empty, compact and convex. �

Theorem 13 Let V = {Vi}i∈ Im ∈ P(m,k, d) with weights v = (vi)i∈Im. If

‖S−1
V V ∗

i Vi‖2
= v2i ‖S−1

V PR(V ∗
i
)‖2

= c for every i ∈ Im ,

then V#, the canonical dual RS of V, is the unique 1-loss optimal dual RS for V (and hence
the r-loss optimal dual RS for every r). In other words, D1(V) = {V#}.

Proof. By Proposition 12, there exists some W = {Wi}i∈ Im ∈ D1(V). Then

‖W‖V = max
i∈ Im

‖W ∗
i Vi‖2

≤ max
i∈ Im

‖S−1
V V ∗

i Vi‖2
= ‖V#‖V = c .

If we denote each ViS
−1
V = Ci , then ‖W ∗

i Vi‖22 ≤ c = ‖C∗
i Vi‖22 for every i ∈ Im . Recall

that, by Eq. (3), ‖W ∗
i Vi‖22 = v2i ‖W ∗

i ‖22 , since ViV
∗
i = v2i IKi

. Similarly, we get that each
‖C∗

i Vi‖22 = v2i ‖C∗
i ‖22 . Therefore ‖Wi‖22 ≤ ‖C∗

i ‖22 for every i ∈ Im . Note that

‖W ∗
i ‖22 = ‖C∗

i + (W ∗
i − C∗

i )‖22 = ‖C∗
i ‖22 + ‖W ∗

i − C∗
i ‖22 + 2 Re

(

tr
[

(W ∗
i − C∗

i )Ci

]

)

and hence ‖W ∗
i − C∗

i ‖22 + 2 Re
(

tr
[

(W ∗
i − C∗

i )Ci

]

)

≤ 0, for every i ∈ Im . Finally,

∑

i∈ Im

tr
[

(W ∗
i − C∗

i )Ci

]

= tr
[

(T ∗
W − T ∗

V#)TVS
−1
V

]

= 0 ,
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since both W and V# are dual RS’s for V. Then
0 ≤

∑

i∈ Im

‖W ∗
i − C∗

i ‖22 =
∑

i∈ Im

‖W ∗
i − C∗

i ‖22 +
∑

i∈ Im

2 Re
(

tr
[

(W ∗
i − C∗

i )Ci

]

)

≤ 0 ,

which implies that W = {Wi}i∈ Im = {Ci}i∈ Im = V#. �

A system V ∈ RS(m,k, d) is called a protocol for H if SV = IH . This notion appears in
[4], [15] (see also [5], where protocols are related to C∗-encodings with noiseless subsystems).

Corollary 14 Let V = {Vi}i∈ Im ∈ P(m,k, d) be a projective protocol for H (i.e. SV = I)

such that ‖V ∗
i Vi‖2

= v2i k
1/2
i = c for every i ∈ Im . Then D1(V) = {V#} = {V}.

Proof. By hypothesis SV = IH , and hence ‖S−1
V V ∗

i Vi‖2
= ‖V ∗

i Vi‖2
= c for every i ∈ Im .

Thus, the previous theorem can be applied in this case.

Remark 15 Examples of projective protocols as in Corollary 14 are the equi-dimensional
uniform projective protocols i.e., {Vi}i∈Im ∈ P(m, k 1, d) that are uniform. These are the
analogues of the so-called uniform fusion frames.

The (m,1, d) case of Theorem 13 is a rephrasing of [14, Thm 2.6], since all vector frames are
projective as RS’s. Moreover, we can conclude from the examples [14, Section 3] that the
optimal dual system W ∈ D1(V) may not be the canonical dual RS and may be not unique
for a general V ∈ P(m,k, d). △

4 Stability of RS’s under erasures of coefficient packets

In this section we consider a different approach to the erasures problem. Indeed given a
fixed RS V, assume that we can identify the set J ⊂ Im such that {Vi x}i∈J are the missing
or delayed packets of coefficients in the transmission of the signal x ∈ H. In this case
we shall state conditions which assure that the system VJ = {Vi}i∈Im\J corresponding to
the remaining set of indexes is still a RS. Notice that this last fact allows to have perfect
reconstruction with suitable dual RS’s. Hence, an explicit computation of the canonical dual
(VJ)

# is given in this case.

The following statement is a generalization and a slight improvement of similar results of P.
Casazza and G. Kutyniok [7] and Asgari [1] for fusion frames.

Proposition 16 Let V = {Vi}i∈ Im ∈ RS(m,k, d) with bounds AV , BV . Fix a subset J ⊂ Im

and consider the matrix MJ
def
= Id −

∑

i∈J V
∗
i Vi S

−1
V ∈ Mn(C). Then,

VJ = (Vi)i∈Im\J is a RS for H ∼= Cd ⇐⇒ MJ ∈ Gl (d) . (8)

In this case we can compute the following data for VJ :

1. The frame operator SVJ
= MJ SV .

2. The bounds of VJ can be estimated by AV

‖M−1
J

‖ ≤ AVJ
and BVJ

≤ BV .

3. The canonical dual can be characterized as

(VJ)
# = {Vi S

−1
VJ

}i/∈J = {V#
i M−1

J }i/∈J def

= (V#)J ·M−1
J .

That is, (VJ)
# is the truncation of the canonical dual V# modified with M−1

J .
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Proof. It is straightforward to check that MJ = SVJ
S−1
V =⇒ SVJ

= MJ SV . This last fact
implies the equivalence of Eq. (8). On the other hand,

AV ‖M−1
J ‖−1 ≤ ‖(MJ SV)

−1‖−1 = ‖S−1
VJ

‖−1 = AVJ
.

The fact that 0 < SVJ
≤ SV assures that BVJ

≤ BV . Let us denote V# = {Wi}i∈ Im and
(V#)J = {Wi}i/∈J . Then the formula SVJ

= MJ SV gives the equality

(V#)J ·M−1
J

def
= {Wi M

−1
J }i/∈J = {Vi S

−1
V M−1

J }i/∈J = {Vi S
−1
VJ

}i/∈J = (VJ)
# . �

Remark 17 In [7] P. Casazza and G. Kutyniok stated the sufficient (and easily computable)
condition

∑

i∈J
‖Vi‖2sp < AV for the invertibility of the matrix MJ of Proposition 16. Indeed,

if ‖∑
i∈J

V ∗
i Vi‖sp < AV (compare with the condition

∑

i∈J
‖Vi‖2sp < AV ), then ‖Id −MJ‖sp < 1

and MJ ∈ Gl (d). They also give the estimation AV −∑
i∈J

‖Vi‖2sp ≤ AVJ
. This follows from

AV −∑i∈J ‖Vi‖2sp ≤ AV − ‖∑i∈J V
∗
i Vi‖sp ≤ AV

‖M−1
J

‖sp

Prop.16
≤ AVJ

.

The result of Asgari in [1] is similar to Eq. (8), but stated for fusion frames and assuming
that |J | = 1, with a different lower bound for VJ . △

5 Approximation by projective RS’s

Given a fixed V ∈ P(m,k, d), notice that the optimal dual RS’s obtained in Theorems 7, and
13 , are not projective RS’s, in general. Although there could be some projective elements
in D(V) (we shall focus this problem in the following section), we are interested in those
(m,k, d)-projective RS’s that are closest, with respect to some distance function, to a fixed
S = {Si}i∈ Im ∈ D(V) which has some desired properties. Given W ∈ RS(m,k, d), we
consider

d(S , W)
def

= ‖TS − TW‖
2
= ‖T ∗

S − T ∗
W‖

2
,

the distance between their synthesis (or analysis) operators. Hence, we seek for W0 ∈
P(m,k, d) that minimize d(S , W) among the projective RS’s. In what follows we will
describe the structure of such (unique) minimizers in case S is an injective RS. As one would
expect, its “directions” are the coisometries of the polar decompositions of the coordinate
operators Si of S, while its weights are the “averages” of their singular values. We need first
some preliminary results:

Given k, n ∈ N such that k ≤ n, we denote by

I(k , n) = {U ∈ L(Ck , Cn) : U∗U = Ik} ,

the set of isometries from Ck into Cn. The following result can be found in [2]:

Lemma 18 Let k, n ∈ N such that k ≤ n, and let A ∈ Mn,k(C) be a full rank matrix with
polar decomposition A = U |A| with U ∈ I(k , n). Then ‖A− U‖

2
= min

V ∈I(k , n)
‖A− V ‖

2
.

�
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Recall that for every A ∈ Mn,k(C) its polar decomposition satisfies

A = U |A| = |A∗|U =⇒ U∗A = |A| and A∗ = U∗|A∗| , (9)

where U ∈ Mn,k(C) has kerU = kerA. As expected, the aproximation of a RS by a projec-
tive RS {Si}i∈Im relies on the coisometries that best approximate each Si, which are deter-
mined by the polar decomposition of Si. Nevertheless, one has to determine the appropiate
weights which combine those coisometries. That is done in the following Proposition.

Proposition 19 Let S = {Si}i∈ Im ∈ RSI(m,k, d). Then there exists a unique

W0 ∈ P(m,k, d) such that d(S , W0) = min
W∈P(m,k,d)

d(W , S) , (10)

and it is given by W0 = {αi Ui}i∈ Im where each αi =
tr |Si|
ki

and Si = Ui |Si| is the polar

decomposition of each Si .

Proof. Let W ∈ P(m,k, d) be a system such that the minimum in (10) is attained at W.
Denote by w = (wi)i∈Im ∈ Rm

+ the weights of W. Notice that

‖T ∗
S − T ∗

W‖2
2
=

m
∑

i=1

‖S∗
i −W ∗

i ‖22 and each WiW
∗
i = w2

i IKi
,

Thus, each isometry w−1
i W ∗

i ∈ I(ki , d) attains the minimum in the optimization problem

∥

∥w−1
i W ∗

i − S∗
i

wi

∥

∥

2
= min

X∈I(ki , d)

∥

∥X − S∗
i

wi

∥

∥

2
,

where, by hypothesis, each w−1
i S∗

i is a full rank linear transformation. By Lemma 18 we get
that w−1

i W ∗
i = U∗

i , the isometry of the polar decomposition

w−1
i S∗

i = U∗
i |w−1

i S∗
i | = w−1

i

(

U∗
i |S∗

i |
) (9)

=⇒ Si = Ui |Si| and kerUi = ker Si ,

and hence Wi = wi Ui . Next we show that each wi =
tr |Si|
ki

. Fix i ∈ Im . Then

‖Si − wi Ui‖2
= min

α>0
‖Si − αUi‖2

.

Therefore wi · ‖Ui‖2
is the norm of the orthogonal projection of Si to the line RUi , using

the R-inner product 〈A,B〉 = Re
[

tr(B∗A)
]

. It can be computed explicitly:

0 ≤ tr |Si|
‖Ui‖2

(9)
=

tr
(

U∗
i Si

)

‖Ui‖2

=

∣

∣

∣

∣

〈

Si ,
Ui

‖Ui‖2

〉 ∣

∣

∣

∣

= ‖PRUi
(Si)‖2

= wi · ‖Ui‖2
,

for every i ∈ Im . Then we obtain the equalities wi = ‖Ui‖−2
2

tr |Si| =
tr |Si|
ki

. �
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6 Examples

In this section we present a variety of examples related with the previous sections. First,
we exhibit a family of (projective) RS’s which satisfies the hypotheses of Corollary 9 and
Theorem 13, the so-called group RS. In particular, the canonical dual of a group RS (which
is also a group RS) is the unique 1-loss optimal dual RS for the 2-error as well as for the
WCRE. The remaining subsections are devoted to the study of particular cases of RS where
D(V)∩P(m,k, d) 6= ∅ . The first examples show that for certain projective systems we can
explicitly construct projective duals, which in general will not coincide with the canonical
duals. The last example describes a Riesz RS whose unique dual RS (i.e. the canonical dual)
is not projective. This leads to a characterization for Riesz RS‘s with projective canonical
dual.

6.1 Group reconstruction systems

We begin by rephrasing some basic notions and results from [13] in the RS’s setting: Let
K0

∼= Ck and V ∈ L(H , K0). Given a unitary representation G ∋ g 7→ Ug ∈ U(H) of a finite
group G in U(H) we say that

V(G , V )
def

= {V Ug}g∈G

is a G-reconstruction system (shortly, G-RS) if V(G , V ) ∈ RS(m, k1, d), where m = |G|.
In this case the space K = Km

0 . If S = V ∗(K0), this is equivalent to the fact that

span
{

⋃

g∈G
Ug(S)

}

= H ,

where V ∈ L(H , K) is the base operator for V(G , V ). This definition of G-RS reduces
to that of G-frame in the vector frames setting. Following [13] and [10] we state a series of
properties of G-RS’s whose proofs are similar to the frame case: Fix V ∈ L(H , K0).

1. Observe that the system V(G , V ) is:

(a) Projective (and uniform) if in addition V V ∗ = v2IK for some v > 0 ;

(b) Injective if in addition V ∗ is injective, in which case also R(V Ug) = K for every
g ∈ G.

2. Notice that the RS-operator of V(G , V ) has the following structure:

SG ,V
def

= SV(G, V ) =
∑

g∈G
U∗
g V

∗ V Ug =
∑

g∈G
Ug−1 V ∗ V Ug .

3. The RS-operator SG ,V (and therefore S−1
G ,V ) commutes with the unitary representation

of G:
Uh · SG ,V = SG , V · Uh for every h ∈ G . (11)

4. In particular, the canonical dual of a G-RS is another G-RS:

V(G , V )# = {V Ug S
−1
G ,V }g∈G = {V S−1

G ,V Ug }g∈G = V(G , V S−1
G, V ) .
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In order to apply our previous results, assume now that the base operator V ∈ L(H,K)
satisfies V V ∗ = v2 IK. Then V(G , V ) is an equi-dimensional uniform projective RS. Hence,
Corollary 9 implies that the 1-loss optimal dual RS for V(G , V ) for the 2-error is its canonical
dual V(G , V )#. In this case then V(G , V ) also satisfies the hypothesis of Theorem 13:
V(G , V ) is a G-projective RS, and

‖(S−1
G, V U∗

g V
∗)(V Ug)‖2

= ‖U∗
g (S

−1
G ,V V ∗V )Ug ‖2

= ‖S−1
G ,V V ∗V ‖

2
= c .

Thus, the canonical dual of such G-RS’s is the unique 1-loss optimal dual for the worst-case
error. If the base operator V ∈ L(H,K) is surjective, so that V(G , V ) is an injective RS
then, using Proposition 19, the projective RS nearest to V(G , V )# can be computed in the
following way: For every g ∈ G, we have that

|V S−1
G, V Ug|2 = U∗

g S
−1
G, V V ∗ V S−1

G ,V Ug = U∗
g |V S−1

G ,V |2 Ug .

Taking square roots at both sides, we get that |V Ug S
−1
G ,V | = U∗

g |V S−1
G, V |Ug for every g ∈ G.

Therefore, if we consider the polar decomposition V S−1
G ,V = W |V S−1

G ,V | of V S−1
G ,V , then

also
V S−1

G ,V Ug =
(

W Ug

) (

U∗
g |V S−1

G ,V |Ug

)

=
(

W Ug

)

|V Ug S
−1
G ,V |

is the polar decomposition of each entry V S−1
G ,V Ug of V(G , V )#. In conclusion, if we denote

w =
tr |V S−1

G ,V |
k

, then V(G , wW ) =
{

wW Ug }g∈G

is the best projective approximation of V(G , V )# provided by Proposition 19. It is clear
from the previous computations that it is again a G-RS.

6.2 Dual projective systems

Next we consider an example of a system V = {Vi}i∈ Im ∈ P(m,k, d) with projective dual
systems but such that V# /∈ P(m,k, d) :

Example 20 Let d = 3, m = 2 and k = (2, 2). Let V1 and V2 ∈ L(C3 , C2) be given by

V1(x, y, z) = (y, z) and V2(x, y, z) = (x, z) for every (x, y, z) ∈ C
3 .

Then V = (V1 , V2) ∈ P(m,k, d) with weights 12 . If S1 = {e1}⊥ and S2 = {e2}⊥, then

SV = V ∗
1 V1 + V ∗

2 V2 = PS1
+ PS2

=





1 0 0
0 1 0
0 0 2



 .

Therefore V# /∈ P(m,k, d) since S−1
V V ∗

1 (u, v) = (0, u, v
2
) for (u, v) ∈ C2, so that the entry

V1 S
−1
V of V# is not a multiple of a coisometry.

Let W = (W1 , W2) ∈ P(m,k, d) and assume that T ∗
W TV = W ∗

1 V1+W ∗
2 V2 = I3 . Denote by

{v1 , v2} the canonical basis of C2 and by {e1 , e2 , e3} that of C3. Then, easy computations
using the definition of V show that

e3 = W ∗
1 v2 +W ∗

2 v2 , e2 = W ∗
1 V1 e2 = W ∗

1 v1 and e1 = W ∗
1 V2 e1 = W ∗

2 v1 . (12)
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The last two equalities show that both W ∗
1 and W ∗

2 should be isometries with weight 1. But

in this case ‖W ∗
1 v2‖ = ‖W ∗

2 v2‖ = 1 and their sum also has norm one. Let ω = 1
2
+ i

√
3
2
.

Then |ω| = 1 but ω + ω = 1. Then we can define W ∗
1 , W

∗
2 ∈ L(C2 , C3) by

W ∗
1 (x, y) = (0, x, ω y) and W ∗

2 (x, y) = (x, 0, ω y) for every (x, y) ∈ C
2 .

The W ∗
i are isometries and satisfy the three conditions of (12). Therefore, the system

W = (W1 , W2) lies in P(m,k, d) and it is a dual-RS for V.
Nevertheless, if we consider V1 and V2 as operators in L(R3 , R2), then such a W can not
exists in the real case. Indeed, looking at Eq. (12), we can deduce that W ∗

1 v2 ∈ {e2}⊥ and
W ∗

2 v2 ∈ {e1}⊥. These facts, together with the equality e3 = W ∗
1 v2 +W ∗

2 v2 imply that both
W ∗

1 v2 and W ∗
2 v2 ∈ span{e3}, which is impossible in the real case. △

Example 21 We can generalize Example 20 in the following way: Assume that the projec-
tive system V = {Vi}i∈ Im ∈ P(m,k, d) has the property that all the projections Pi = PR(V ∗

i
)

are pairwise commuting. In this case D(V) ∩ P(m,k, d) 6= ∅ .

Indeed, suppose first that all the weights of V are 1. Then SV =
∑

i∈Im Pi . The commutation
hypothesis assures that, by taking all the possible intersections among the ranges of the
projections Pi , we get a family of projections (Qj)j∈In such that

1. Qi Qj = 0 if i 6= j and
∑

j∈In Qj = IH .

2. SV =
∑

j∈In rj Qj with rj ∈ Im for every j ∈ In .

3. For every i ∈ Im there exists Ji ⊆ In such that Pi =
∑

j∈Ji Qj .

We construct the system W = {Wi}i∈ Im ∈ D(V) ∩ P(m,k, d) as follows: let Wi = Vi Ui ,
where

Ui =
∑

j∈Ji
εij Qj for some εij ∈ { 1 , −1 , ω , ω } , where ω =

1

2
+ i

√
3

2
.

Note that since all |εij| = 1, then W ∈ P(m,k, d). A careful selection of these coefficients,
taking account the parity of the numbers rj = | Sj |, where Sj = {i ∈ Im : j ∈ Ji} for
j ∈ In , allows to find such a W such that W ∈ D(V). The general case follows from
the previous case. Indeed, if V has weights v = (vi)i∈Im , we replace the previous W by
Wv = {v−2

i Wi}i∈Im . △

Remark 22 (Projective dual pairs) The previous example gives a method to construct
pairs of projective RS’s (V,W) such that W ∈ D(V). Moreover, this method shows that for
every choice of parameters (m,k, d) such that

∑

i∈Im ki ≥ d there exist V, W ∈ P(m,k, d)
such that W ∈ D(V). Indeed, to find such a projective dual pair (V,W) we construct
V ∈ P(m,k, d) in such a way that the projections Pi = V ∗

i Vi for i ∈ Im are pairwise
commuting (i.e. that are simultaneously diagonalizable by an orthonormal basis of H).
Then, we can apply the construction in the example above to obtain explicitly the projective
dual W.

These facts show that projective dual pairs are indeed more frequent than projective pro-
tocols i.e. RS’s V such that (V,V) is a projective dual pair, since it is known that there
are choices of parameters (m,k, d) for which no projective (m,k, d)- protocols exist (see [17,
Example 3.1.2.]). △
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6.3 Riesz reconstruction systems

The elements of RS(m,k, d) are called Riesz RS’s if dimK = trk = d = dimH . In this
case, every V = {Vi}i∈ Im ∈ RS(m,k, d) has the property that both the synthesis operator
TV and the analysis operator T ∗

V are invertible. Also T ∗
V# = S−1

V T ∗
V = T−1

V , and

H = R(V ∗
1 )⊕ · · · ⊕R(V ∗

m) (direct sum, but not necessarily orthogonal) , (13)

because the sum gives always H but in this case the sum must be direct by dimensional
reasons. On the other hand, if V = {Vi}i∈ Im ∈ RS(m,k, d) is a Riesz RS for H then

D(V) = {V#} , (14)

since the only left inverse of TV is T−1
V = T ∗

V# . Recall that T
∗
W TV = IH for every W ∈ D(V) ,

and that the map RS(m,k, d) ∋ W 7→ T ∗
W is one to one.

Example 23 Let d = 4, m = 2 and k = (2, 2). We now construct a (necessarily) Riesz
V ∈ P(m,k, d) such that D(V) ∩ P(m,k, d) = ∅. Let V1 , V2 ∈ L(C4 , C2) be given by

V1(x1 , x2 , x3 , x4) = (x1 , x2) and V2(x1 , x2 , x3 , x4) = (x3 ,
x2−x4√

2
) , (15)

for (x1 , x2 , x3 , x4) ∈ C4. It is easy to see that V = (V1 , V2) ∈ P(m,k, d) with weights
(1, 1). Let us denote by S = ker V2 = span{e1 , e2+e4} ⊆ C4. Given W ∈ D(V), the equality

W ∗
1 V1 +W ∗

2 V2 = IH

implies that W ∗
1 V1 x = x for every x ∈ S. Then W ∗

1 ∈ L(C2 , C4) is completely determined
as the inverse of V1

∣

∣

S
: S → C2. But we have that

‖V1 e1‖ = ‖e1‖ = 1 while ‖V1(e2 + e4)‖ = ‖e2‖ =
‖e2 + e4‖√

2
.

Then V1

∣

∣

S
is not a multiple of an isometry and neither is W ∗

1 .

We can enlarge the previous example in order to get a RS with redundancy and without
projective duals. Indeed, consider V0 = (V1 , V2 , V3) ∈ P(3 , (2, 2, 2) , 4) obtained from V by
adding any coisometry V3 ∈ L(C4 , C2) such that also ker V3 = S. Then, arguing as before,
we conclude that there is no W = (W1 , W2 , W3) ∈ D(V0) such that W1 is a multiple of a
coisometry. △
Remark 24 Assume that V = {Vi}i∈ Im ∈ RS(m,k, d) is a Riesz RS. Then, arguing as in
the previous example, it is easy to see that the following conditions are equivalent:

1. D(V) ∩ P(m,k, d) 6= ∅.

2. V# ∈ P(m,k, d).

3. If we denote by Si =
⋂

j 6=i

ker Vi =
(
⊕

j 6=i

R(V ∗)
)⊥

, then Vi

∣

∣

Si
∈ L(Si , Ki) is a multiple of

an isometry, for every i ∈ Im .

These conditions are fulfilled if the sum of Eq. (13) is orthogonal. Also if every ki = 1. But
there exist other cases in which D(V)∩P(m,k, d) 6= ∅. For example, if we take the operator
V1 of Eq. (15), and consider

V3(x1 , x2 , x3 , x4) = (x1 − x3 , x2 − x4) for (x1 , x2 , x3 , x4) ∈ C
4 ,

then the condition 3 is satisfied by V ′ = (V1 , V3) ∈ P(2, (2, 2), 4). △
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