4,313 research outputs found

    Use of waveform lidar and hyperspectral sensors to assess selected spatial and structural patterns associated with recent and repeat disturbance and the abundance of sugar maple (Acer saccharum Marsh.) in a temperate mixed hardwood and conifer forest.

    Get PDF
    Abstract Waveform lidar imagery was acquired on September 26, 1999 over the Bartlett Experimental Forest (BEF) in New Hampshire (USA) using NASA\u27s Laser Vegetation Imaging Sensor (LVIS). This flight occurred 20 months after an ice storm damaged millions of hectares of forestland in northeastern North America. Lidar measurements of the amplitude and intensity of ground energy returns appeared to readily detect areas of moderate to severe ice storm damage associated with the worst damage. Southern through eastern aspects on side slopes were particularly susceptible to higher levels of damage, in large part overlapping tracts of forest that had suffered the highest levels of wind damage from the 1938 hurricane and containing the highest levels of sugar maple basal area and biomass. The levels of sugar maple abundance were determined through analysis of the 1997 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) high resolution spectral imagery and inventory of USFS Northern Research Station field plots. We found a relationship between field measurements of stem volume losses and the LVIS metric of mean canopy height (r2 = 0.66; root mean square errors = 5.7 m3/ha, p \u3c 0.0001) in areas that had been subjected to moderate-to-severe ice storm damage, accurately documenting the short-term outcome of a single disturbance event

    Expression of Cellulosome Components and Type IV Pili within the Extracellular Proteome of Ruminococcus flavefaciens 007

    Get PDF
    Funding: The Rowett Institute receives funding from SG-RESAS (Scottish Government Rural and Environmental Science and Analysis Service). Visit of M.V. was supported by research grants from FEMS and Slovene human resources development and scholarship funds. Parts of this work were funded by grants from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel – BSF Energy Research grant to E.A.B. and B.A.W. and Regular BSF Research grants to R.L. and B.A.W. – and by the Israel Science Foundation (grant nos 966/09 and 159/07 291/08). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Absolute Thickness Measurements on Coatings Without Prior Knowledge of Material Properties Using Terahertz Energy

    Get PDF
    This study investigates the applicability of a novel noncontact single-sided terahertz electromagnetic measurement method for measuring thickness in dielectric coating systems having either dielectric or conductive substrate materials. The method does not require knowledge of the velocity of terahertz waves in the coating material. The dielectric coatings ranged from approximately 300 to 1400 m in thickness. First, the terahertz method was validated on a bulk dielectric sample to determine its ability to precisely measure thickness and density variation. Then, the method was studied on simulated coating systems. One simulated coating consisted of layered thin paper samples of varying thicknesses on a ceramic substrate. Another simulated coating system consisted of adhesive-backed Teflon adhered to conducting and dielectric substrates. Alumina samples that were coated with a ceramic adhesive layer were also investigated. Finally, the method was studied for thickness measurement of actual thermal barrier coatings (TBC) on ceramic substrates. The unique aspects and limitations of this method for thickness measurements are discussed

    Resilience-Focused HIV Care to Promote Psychological Well-Being During COVID-19 and Other Catastrophes

    Get PDF
    The COVID-19 pandemic has adversely affected people with HIV due to disruptions in prevention and care services, economic impacts, and social isolation. These stressors have contributed to worse physical health, HIV treatment outcomes, and psychological wellness. Psychological sequelae associated with COVID-19 threaten the overall well-being of people with HIV and efforts to end the HIV epidemic. Resilience is a known mediator of health disparities and can improve psychological wellness and behavioral health outcomes along the HIV Continuum of Care. Though resilience is often organically developed in individuals as a result of overcoming adversity, it may be fostered through multi-level internal and external resourcing (at psychological, interpersonal, spiritual, and community/neighborhood levels). In this Perspective, resilience-focused HIV care is defined as a model of care in which providers promote optimum health for people with HIV by facilitating multi-level resourcing to buffer the effects of adversity and foster well-being. Adoption of resilience-focused HIV care may help providers better promote well-being among people living with HIV during this time of increased psychological stress and help prepare systems of care for future catastrophes. Informed by the literature, we constructed a set of core principles and considerations for successful adoption and sustainability of resilience-focused HIV care. Our definition of resilience-focused HIV care marks a novel contribution to the knowledge base and responds to the call for a multidimensional definition of resilience as part of HIV research

    Human Grasp Assist Device With Exoskeleton

    Get PDF
    A grasp assist system includes a glove, actuator assembly, and controller. The glove includes a digit, i.e., a finger or thumb, and a force sensor. The sensor measures a grasping force applied to an object by an operator wearing the glove. Phalange rings are positioned with respect to the digit. A flexible tendon is connected at one end to one of the rings and is routed through the remaining rings. An exoskeleton positioned with respect to the digit includes hinged interconnecting members each connected to a corresponding ring, and/or a single piece of slotted material. The actuator assembly is connected to another end of the tendon. The controller calculates a tensile force in response to the measured grasping force, and commands the tensile force from the actuator assembly to thereby pull on the tendon. The exoskeleton offloads some of the tensile force from the operator's finger to the glove

    The Redox Homeostasis of Skeletal Muscle Cells Regulates Stage Differentiation of Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is an obligatory intracellular parasite that causes persistent infections in birds and mammals including ~30% of the world’s human population. Differentiation from proliferative and metabolically active tachyzoites to largely dormant bradyzoites initiates the chronic phase of infection and occurs predominantly in brain and muscle tissues. Here we used murine skeletal muscle cells (SkMCs) to decipher host cellular factors that favor T. gondii bradyzoite formation in terminally differentiated and syncytial myotubes, but not in proliferating myoblast precursors. Genome-wide transcriptome analyses of T. gondii-infected SkMCs and non-infected controls identified ~6,500 genes which were differentially expressed (DEGs) in myotubes compared to myoblasts, largely irrespective of infection. On the other hand, genes related to central carbohydrate metabolism, to redox homeostasis, and to the Nrf2-dependent stress response pathway were enriched in both infected myoblast precursors and myotubes. Stable isotope-resolved metabolite profiling indicated increased fluxes into the oxidative branch of the pentose phosphate pathway (OxPPP) in infected myoblasts and into the TCA cycle in infected myotubes. High OxPPP activity in infected myoblasts was associated with increased NADPH/NADP+ ratio while myotubes exhibited higher ROS levels and lower expression of anti-oxidants and detoxification enzymes. Pharmacological reduction of ROS levels in SkMCs inhibited bradyzoite differentiation, while increased ROS induced bradyzoite formation. Thus, we identified a novel host cell-dependent mechanism that triggers stage conversion of T. gondii into persistent tissue cysts in its natural host cell type.Peer Reviewe
    corecore