6 research outputs found

    Cross-Contamination of Residual Emerging Contaminants and Antibiotic Resistant Bacteria in Lettuce Crops and Soil Irrigated with Wastewater Treated by Sunlight/H2O2

    No full text
    The sunlight/H2O2 process has recently been considered as a sustainable alternative option compared to other solar driven advanced oxidation processes (AOPs) in advanced treatment of municipal wastewater (WW) to be reused for crop irrigation. Accordingly, in this study sunlight/H2O2 was used as disinfection/oxidation treatment for urban WW treatment plant effluent in a compound parabolic collector photoreactor to assess subsequent cross-contamination of lettuce and soil by contaminants of emerging concern (CECs) (determined by QuEChERS extraction and LC-QqLIT-MS/MS analysis) and antibiotic resistant (AR) bacteria after irrigation with treated WW. Three CECs (carbamazepine (CBZ), flumequine (FLU), and thiabendazole (TBZ) at 100 μg L(-1)) and two AR bacterial strains (E. coli and E. faecalis, at 10(5) CFU mL(-1)) were spiked in real WW. A detection limit (DL) of 2 CFU mL(-1) was reached after 120 min of solar exposure for AR E. coli, while AR E. faecalis was more resistant to the disinfection process (240 min to reach DL). CBZ and TBZ were poorly removed after 90 min (12% and 50%, respectively) compared to FLU (94%). Lettuce was irrigated with treated WW for 5 weeks. CBZ and TBZ were accumulated in soil up to 472 ng g(-1) and 256 ng g(-1) and up-taken by lettuce up to 109 and 18 ng g(-1), respectively, when 90 min treated WW was used for irrigation; whereas no bacteria contamination was observed when the bacterial density in treated WW was below the DL. A proper treatment time (>90 min) should be guaranteed in order to avoid the transfer of pathogens from disinfected WW to irrigated crops and soil

    TiO2 photocatalysis under natural solar radiation for the degradation of the carbapenem antibiotics imipenem and meropenem in aqueous solutions at pilot plant scale

    No full text
    Summarization: This paper deals with the removal of two last-resort antibiotics, namely imipenem and meropenem, in aqueous solutions employing heterogeneous photocatalysis with TiO2 under natural solar radiation at pilot plant scale. It was found that TiO2 photocatalysis is a very efficient technique for the degradation of both compounds in aqueous solutions, albeit it's relatively low quantum efficiency. At the experimental conditions employed in the present work (compound parabolic collectors photoreactor) the optimal TiO2 concentration was about 50 mg L−1. Experiments conducted in various aqueous matrices lead to the conclusion that the method can be applied to real aqueous matrices, such as natural waters and wastewaters. The comparison of TiO2 photocatalysis and natural photolysis showed an important decrease of the accumulated energy required to achieve the complete removal of both antibiotics which, in terms of normalized illumination time (t30W), represented a reduction of 50 min for imipenem and 60 min for meropenem.Παρουσιάστηκε στο: Water Researc
    corecore