726 research outputs found

    Simulating the complex cell design of Trypanosoma brucei and its motility

    Get PDF
    The flagellate Trypanosoma brucei, which causes the sleeping sickness when infecting a mammalian host, goes through an intricate life cycle. It has a rather complex propulsion mechanism and swims in diverse microenvironments. These continuously exert selective pressure, to which the trypanosome adjusts with its architecture and behavior. As a result, the trypanosome assumes a diversity of complex morphotypes during its life cycle. However, although cell biology has detailed form and function of most of them, experimental data on the dynamic behavior and development of most morphotypes is lacking. Here we show that simulation science can predict intermediate cell designs by conducting specific and controlled modifications of an accurate, nature-inspired cell model, which we developed using information from live cell analyses. The cell models account for several important characteristics of the real trypanosomal morphotypes, such as the geometry and elastic properties of the cell body, and their swimming mechanism using an eukaryotic flagellum. We introduce an elastic network model for the cell body, including bending rigidity and simulate swimming in a fluid environment, using the mesoscale simulation technique called multi-particle collision dynamics. The in silico trypanosome of the bloodstream form displays the characteristic in vivo rotational and translational motility pattern that is crucial for survival and virulence in the vertebrate host. Moreover, our model accurately simulates the trypanosome's tumbling and backward motion. We show that the distinctive course of the attached flagellum around the cell body is one important aspect to produce the observed swimming behavior in a viscous fluid, and also required to reach the maximal swimming velocity. Changing details of the flagellar attachment generates less efficient swimmers. We also simulate different morphotypes that occur during the parasite's development in the tsetse fly, and predict a flagellar course we have not been able to measure in experiments so far

    Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires

    Full text link
    We demonstrate analytically and numerically that a subwavelength-core dielectric photonic nanowire embedded in a properly designed photonic crystal fiber cladding shows evidence of a previously unknown kind of nonlinearity (the magnitude of which is strongly dependent on the waveguide parameters) which acts on solitons so as to considerably reduce their Raman self-frequency shift. An explanation of the phenomenon in terms of indirect pulse negative chirping and broadening is given by using the moment method. Our conclusions are supported by detailed numerical simulations.Comment: 5 pages, 3 figure

    Gain in Three-Dimensional Metamaterials utilizing Semiconductor Quantum Structures

    Full text link
    We demonstrate gain in a three-dimensional metal/semiconductor metamaterial by the integration of optically active semiconductor quantum structures. The rolling-up of a metallic structure on top of strained semiconductor layers containing a quantum well allows us to achieve a three-dimensional superlattice consisting of alternating layers of lossy metallic and amplifying gain material. We show that the transmission through the superlattice can be enhanced by exciting the quantum well optically under both pulsed or continuous wave excitation. This points out that our structures can be used as a starting point for arbitrary three-dimensional metamaterials including gain

    Kinetics of Martensite Decomposition and Microstructure Stability of Ti-6246 during Rapid Heating to Service Temperatures

    Get PDF
    The aerospace alloy Ti-6246 was subjected to inductive heat treatments with high heating and quenching rates (up to 1500 K/s) while being applied to an in situ diffraction study at the HEMS beamline P07B at DESY. Thereby, the characterization of the emerging phases was possible at any point in the process. The heat treatment schedules include the preparation of Ti-6246 samples by means of a homogenization treatment and subsequent quenching to trigger α″-martensite formation. In order to simulate fast reheating within the scope of application, the samples were reheated to the upper range of possible service temperatures (550–650 °C) with a heating rate of 100 K/s. In a second heat treatment design, the homogenized and quenched sample state was exposed to high-temperature tempering at 840 °C, which aims for the elimination of α″. Again, fast reheating to the same service temperatures was executed. With the aim of this approach, the stability of the microstructure consisting of α-Ti, β-Ti and α″-martensite was characterized. Further, the martensite decomposition path was analyzed. It shows a two-tier nature, firstly approaching the bcc β-unit cell in the low-temperature range (<400 °C) but subsequently transforming into an hcp-like unit cell and later on into equilibrium α-Ti

    Humidity Influence on Mechanics and Failure of Paper Materials: Joint Numerical and Experimental Study on Fiber and Fiber Network Scale

    Full text link
    Paper materials are natural composite materials and well-known to be hydrophilic unless chemical and mechanical processing treatments are undertaken. The relative humidity impacts the fiber elasticity, the fiber-fiber bonds and the failure mechanism. In this work, we present a comprehensive experimental and computational study on the mechanical and failure behaviour of the fiber and the fiber network under humidity influence. The manually extracted cellulose fiber is exposed to different levels of humidity, and then mechanically characterized using Atomic Force Microscopy, which delivers the humidity dependent longitudinal Young's modulus. The obtained relationship allows calculation of fiber elastic modulus at any humidity level. Moreover, by using Confoncal Laser Scanning Microscopy, the coefficient of hygroscopic expansion of the fibers is determined. On the other hand, we present a finite element model to simulate the deformation and the failure of the fiber network. The model includes the fiber anisotropy and the hygroscopic expansion using the experimentally determined constants. In addition, it regards the fiber-fiber bonding and damage by using a humidity dependent cohesive zone interface model. Finite element simulations on exemplary fiber network samples are performed to demonstrate the influence of different aspects including relative humidity and fiber-fiber bonding parameters on the mechanical features such as force-elongation curves, wet strength, extensiability and the local fiber-fiber debonding. In meantime, fiber network failure in a locally wetted region is revealed by tracking of individually stained fibers using in-situ imaging techniques. Both the experimental data and the cohesive finite element simulations demonstrate the pull-out of fibers and imply the significant role of the fiber-fiber debonding in the failure process of the wet paper.Comment: 21 pages,10 figure

    IL-17C and IL-17RE Promote Wound Closure in a Staphylococcus aureus-Based Murine Wound Infection Model

    Get PDF
    The epithelial cytokine interleukin-17C (IL-17C) mediates inflammation through the interleukin 17 receptor E (IL-17RE). Prior studies showed a detrimental role of IL-17C in the pathogenesis of immune-mediated skin diseases (e.g., psoriasis). Here, we examined the role of IL-17C/IL-17RE in wound closure in a Staphylococcus aureus wound infection model. We demonstrate that wound closure is significantly delayed in IL-17RE (Il-17re−/−)- and 17C (Il-17c−/−)-deficient mice. There was no significant difference between WT, Il-17re−/−, and Il-17c−/− mice in the absence of infection. Deficiency for IL-17RE and IL-17C did not significantly affect the elimination of bacteria. IL-17C expression was increased in the epidermis of human S. aureus-infected skin. Our results indicate that the IL-17C/IL-17RE axis contributes to the closure of infected wounds but does not contribute to the elimination of S. aureus

    Symptomatic Diastasis Rectus Abdominis in Children: Review of Current Management Options and Presentation of a Novel Minimally Invasive Epifascial Repair Technique

    Get PDF
    Several surgical techniques are available for an adult patient collective with diastasis recti. Only few research papers addresses the treatment options of diastasis of the rectus abdominis in children. In this case series, we present a new technique of epifascial repair as a novel possibility in successfully repairing defects of the anterior abdominal wall using minimally invasive surgery. In this case series, we present an epifascial repair technique for patients with a diastasis recti with a dehiscence cranial of the umbilicus. Four pediatric patients with symptomatic rectus diastasis were treated with this new surgical technique. All procedures were conducted successfully, and no recurrence was observed in the follow up. All patients showed clinical regression of the rectus diastasis without any postoperative abdominal wall protrusion and good improvement of the symptoms. Intraoperative intraperitoneal air loss, postoperative scar keloid, thermal lesions due to Ultracision and one seroma/hematoma after the removal of the drain were minor complications observed during the follow-up

    Preliminary assessment of the imaging capability of the YAP-(S)PET small animal scanner in neuroscience

    Get PDF
    The new and fully engineered version of the YAP–(S)PET small animal scanner has been tested at the University of Mainz for preliminary assessment of its imaging capability for studies related to neuropharmacology and psychiatry. The main feature of the scanner is the capability to combine PET and SPECT techniques. It allows the development of new and interesting protocols for the investigation of many biological phenomena, more effectively than with PET or SPECT modalities alone. The scanner is made up of four detector heads, each one composed of a 4 � 4c m 2 of YAlO3:Ce (or YAP:Ce) matrix, and has a field of view (FOV) of 4 cm axially � 4c m + transaxially. In PET mode, the volume resolution is less than 8 mm 3 and is nearly constant over the whole FOV, while the sensitivity is about 2%. The SPECT performance is not so good, due to the presence of the multi-hole lead collimator in front of each head. Nevertheless, the YAP–PET scanner offers excellent resolution and sensitivity for performing on the availability of D2-like dopamine receptors on mice and rats in both PET and SPECT modalities

    Motility-induced clustering and meso-scale turbulence in active polar fluids

    Get PDF
    Meso-scale turbulence was originally observed experimentally in various suspensions of swimming bacteria, as well as in the collective motion of active colloids. The corresponding large scale dynamical patterns were reproduced in a simple model of a polar fluid, assuming a constant density of active particles. Recent, more detailed studies in a variety of experimental realizations of active polar fluids revealed additional interesting aspects, such as anomalous velocity statistics and clustering phenomena. Those phenomena cannot be explained by currently available models for active polar fluids. Herein, we extend the continuum model suggested by Dunkel et al to include density variations and a local feedback between the local density and self-propulsion speed of the active polar particles. If the velocity decreases strong enough with the density, a linear stability analysis of the resulting model shows that, in addition to the short-wavelength instability of the original model, a long-wavelength instability occurs. This is typically observed for high densities of polar active particles and is analogous to the well-known phenomenon of motility-induced phase separation (MIPS) in scalar active matter. We determine a simple phase diagram indicating the linear instabilities and perform systematic numerical simulations for the various regions in the corresponding parameter space. The interplay between the well understood short-range instability (leading to meso-scale turbulence) and the long-range instability (associated with MIPS) leads to interesting dynamics and novel phenomena concerning nucleation and coarsening processes. Our simulation results display a rich variety of novel patterns, including phase separation into domains with dynamically changing irregularly shaped boundaries. Anomalous velocity statistics are observed in all phases where the system segregates into regions of high and low densities. This offers a simple explanation for their occurrence in recent experiments with bacterial suspensions.DFG, 163436311, SFB 910: Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzept
    • …
    corecore