805 research outputs found
EPIDEMIOLOGICAL, CLINICA.L AND VIROLOGICAL STUDIES ON INFLUENZA MORBIDITY RATES FOR ТНЕ PERIOD APRIL 1962 – МАY 1963 IN ТНЕ СIТУ OF VARNA
Тhe epidemic process of influenza acquires vaгious forms in its couгse: pandemics, epidemics аnd sporadic morbidity inbetween epidemics. Wе dispose of mоrе precise data оn its course in Bulgaria since 1952. Мorе scanty аrе the data which characteгize influenza epidemics in the city of Vагnа up to 1955 which is seen on Diagr. 1. From the latter it becomes evident that influenza morbidity rates in the city of Vагnа run parallel to morbidity rates in the whole country, being occasionally morе intensive - 1959, 1962. Тlie diаgrаm reveals high level for influenza morbldity rates fог the countгy and the city of Vаrnа in 1956 and аn epidemic peak in 1957, 1959 аnd 1962. Тhe epidemic peak in 1962 is due to аn influenza outbreak caused bу virus А2 which started at the end of January and continued till Магсh, the same уеаr.After the epidemics а period was established, characteгized bу а low level of influenza morbldity rates in the city of Varna. Stress should bе laid оn the fact that determination of actual levels of influenza morbidity rates inbetween epidemics is particularly difficult owing to the imperfect diagnosis and the diversity of clinical forms of influenza
Staggering effects in nuclear and molecular spectra
It is shown that the recently observed Delta J = 2 staggering effect (i.e.
the relative displacement of the levels with angular momenta J, J+4, J+8, ...,
relatively to the levels with angular momenta J+2, J+6, J+10, ...) seen in
superdeformed nuclear bands is also occurring in certain electronically excited
rotational bands of diatomic molecules (YD, CrD, CrH, CoH), in which it is
attributed to interband interactions (bandcrossings). In addition, the Delta J
= 1 staggering effect (i.e. the relative displacement of the levels with even
angular momentum J with respect to the levels of the same band with odd J) is
studied in molecular bands free from Delta J = 2 staggering (i.e. free from
interband interactions/bandcrossings). Bands of YD offer evidence for the
absence of any Delta J = 1 staggering effect due to the disparity of nuclear
masses, while bands of sextet electronic states of CrD demonstrate that Delta J
= 1 staggering is a sensitive probe of deviations from rotational behaviour,
due in this particular case to the spin-rotation and spin-spin interactions.Comment: LaTeX, 16 pages plus 30 figures given in separate .ps files. To
appear in the proceedings of the 4th European Workshop on Quantum Systems in
Chemistry and Physics (Marly-le-Roi, France, 1999), ed. J. Maruani et al.
(Kluwer, Dordrecht
Wnt4 and LAP2alpha as pacemakers of Thymic Epithelial Senescence
Age-associated thymic involution has considerable physiological impact by inhibiting de novo T-cell selection. This impaired T-cell production leads to weakened immune responses. Yet the molecular mechanisms of thymic stromal adipose involution are not clear. Age-related alterations also occur in the murine thymus providing an excellent model system. In the present work structural and molecular changes of the murine thymic stroma were investigated during aging. We show that thymic epithelial senescence correlates with significant destruction of epithelial network followed by adipose involution. We also show in purified thymic epithelial cells the age-related down-regulation of Wnt4 (and subsequently FoxN1), and the prominent increase in LAP2α expression. These senescence-related changes of gene expression are strikingly similar to those observed during mesenchymal to pre-adipocyte differentiation of fibroblast cells suggesting similar molecular background in epithelial cells. For molecular level proof-of-principle stable LAP2α and Wnt4-over-expressing thymic epithelial cell lines were established. LAP2α over-expression provoked a surge of PPARγ expression, a transcription factor expressed in pre-adipocytes. In contrast, additional Wnt4 decreased the mRNA level of ADRP, a target gene of PPARγ. Murine embryonic thymic lobes have also been transfected with LAP2α- or Wnt4-encoding lentiviral vectors. As expected LAP2α over-expression increased, while additional Wnt4 secretion suppressed PPARγ expression. Based on these pioneer experiments we propose that decreased Wnt activity and increased LAP2α expression provide the molecular basis during thymic senescence. We suggest that these molecular changes trigger thymic epithelial senescence accompanied by adipose involution. This process may either occur directly where epithelium can trans-differentiate into pre-adipocytes; or indirectly where first epithelial to mesenchymal transition (EMT) occurs followed by subsequent pre-adipocyte differentiation. The latter version fits better with literature data and is supported by the observed histological and molecular level changes
Red Dragon: Low-cost Access to the Surface of Mars using Commercial Capabilities
We will discuss the feasibility of using a minimally-modified variant of a SpaceX Dragon capsule as a low-cost, large-capacity, near-term, Mars lander for scientific and human-precursor missions. We have been evaluating such a Red Dragon platform as an option for a Discovery Program mission concept. A Red Dragon lander has the potential to be low cost primarily because it would be derived from a routinely-flying spacecraft. Dragon is being developed to ferry cargo and crew to and from the International Space Station (ISS). The cargo variant is currently undergoing test flights, which will be followed by standard ISS cargo missions and, eventually, crewed flights. The human variant, unlike other Earth-return vehicles, appears to also have most of the capabilities necessary to land on Mars. In particular, it has a set of high-thrust, throttleable, storable bi-propellant Super- Draco engines integrated directly into the capsule which are intended for launch abort and powered landings on Earth. These thrusters suggest the possibility of a parachute-free, fully-propulsive deceleration at Mars from supersonic speeds to the surface. Concepts for large, human-relevant landers (see, e.g., [1]) also often employ supersonic retro-propulsion; Red Dragon's entry, descent, and landing approach would scale to those landers. Further, SpaceX's Falcon Heavy launch vehicle, currently under development and expected to have its first flight in 2013, will be capable of sending Dragon on a trajectory to Mars. We will discuss our motivation for exploring a Red Dragon lander, the primary technical questions which determine its feasibility, and the current results of our analysis. In particular, we will examine entry, descent, and landing (EDL) in detail. We will describe the modifications to Dragon necessary for interplanetary cruise, EDL, and operations on the Martian surface
Ru-Catalyzed Isomerization of Achmatowicz Derivatives : A Sustainable Route to Biorenewables and Bioactive Lactones
A Ru-catalyzed isomerization of Achmatowicz derivatives that opens unexplored routes to diversify the biogenic furanic platform is reported. The mechanistic insights of this formally redox-neutral intramolecular process were studied computationally and by deuterium labeling. The transformation proved to be a robust synthetic tool to achieve the synthesis of bioderived-monomers and a series of 4-keto-δ-valerolactones that further enabled the development of a flexible strategy for the synthesis of acetogenins. A concise and protective group-free asymmetric total synthesis of two natural products, namely, (S,S)-muricatacin and the (S,S)-L-factor, is also described.publishedVersionPeer reviewe
Bars in early- and late-type disks in COSMOS
We investigate the (large-scale) bar fraction in a mass-complete sample of M
> 10^10.5 Msun disk galaxies at 0.2 < z < 0.6 in the COSMOS field. The fraction
of barred disks strongly depends on mass, disk morphology, and specific star
formation rate (SSFR). At intermediate stellar mass (10^10.5 < M < 10^11 Msun)
the bar fraction in early-type disks is much higher, at all redshifts, by a
factor ~2, than that in late-type disks. This trend is reversed at higher
stellar mass (M > 10^11 Msun), where the fraction of bars in early-type disks
becomes significantly lower, at all redshifts, than that in late-type disks.
The bar fractions for galaxies with low and high SSFRs closely follow those of
the morphologically-selected early-type and late-type populations,
respectively. This indicates a close correspondence between morphology and SSFR
in disk galaxies at these earlier epochs. Interestingly, the total bar fraction
in 10^10.5 < M < 10^11 Msun disks is built up by a factor of ~2 over the
redshift interval explored, while for M > 10^11 Msun disks it remains roughly
constant. This indicates that, already by z ~ 0.6, spectral and morphological
transformations in the most massive disk galaxies have largely converged to the
familiar Hubble sequence that we observe in the local Universe, while for
intermediate mass disks this convergence is ongoing until at least z ~ 0.2.
Moreover, these results highlight the importance of employing mass-limited
samples for quantifying the evolution of barred galaxies. Finally, the
evolution of the barred galaxy populations investigated does not depend on the
large-scale environmental density (at least, on the scales which can be probed
with the available photometric redshifts).Comment: 10 pages, 4 figures, updated to reflect version accepted by MNRA
Direct Observation of the Dynamics of Latex Particles Confined inside Thinning Water-Air Films
The dynamics of micrometer-size polystyrene latex particles confined in thinning foam films was
investigated by microscopic interferometric observation. The behavior of the entrapped particles depends
on the mobility of the film surfaces, the particle concentration, hydrophobicity, and rate of film formation.
When the films were stabilized by sodium dodecyl sulfate, no entrapment of particles between the surfaces
was possible. When protein was used as a stabilizer, a limited number of particles were caught inside
the film area due to the decreased mobility of the interfaces. In this case, extraordinary long-ranged (>100
Ìm) capillary attraction leads to two-dimensional (2D) particle aggregation. A major change occurs when
the microspheres are partially hydrophobized by the presence of cationic surfactant. After the foam films
are opened and closed a few times, a layer of particles simultaneously adsorbed to the two interfaces is
formed, which sterically inhibits any further film opening and thinning. The particles within this layer
show an excellent 2D hexagonal ordering. The experimental data are relevant to the dynamics of defects
in coating films, Pickering emulsions, and particle assembly into 2D arrays
- …