182 research outputs found
Photon wave mechanics and position eigenvectors
One and two photon wave functions are derived by projecting the quantum state
vector onto simultaneous eigenvectors of the number operator and a recently
constructed photon position operator [Phys. Rev A 59, 954 (1999)] that couples
spin and orbital angular momentum. While only the Landau-Peierls wave function
defines a positive definite photon density, a similarity transformation to a
biorthogonal field-potential pair of positive frequency solutions of Maxwell's
equations preserves eigenvalues and expectation values. We show that this real
space description of photons is compatible with all of the usual rules of
quantum mechanics and provides a framework for understanding the relationships
amongst different forms of the photon wave function in the literature. It also
gives a quantum picture of the optical angular momentum of beams that applies
to both one photon and coherent states. According to the rules of qunatum
mechanics, this wave function gives the probability to count a photon at any
position in space.Comment: 14 pages, to be published in Phys. Rev.
Threatened plant translocation in Australia: A review
Translocation of plants has become a common approach in conservation biology in the past two decades, but it is not clear how successful it is in achieving long-term conservation outcomes. We combined a literature review with extensive consultations with translocation practitioners to compile data on translocations of threatened Australian plants. We documented 1001 translocations involving 376 taxa, concentrated in regions and habitats with high numbers of threatened species. Only 109 translocation attempts encompassing 71 taxa are documented in peer-reviewed literature. Over 85% of translocations have occurred since 2000 and half since 2010, with an especially rapid increase in development mitigation translocations, which account for 30% of all translocations documented. Many translocations involved extremely small numbers of propagules, with 45% using 250. Of the 724 translocations with sufficient data to assess performance, 42% have <10 plants surviving, and 13% have at least 50 plants surviving and some second-generation recruitment into the population. Translocation performance, measured by number of plants surviving and second-generation recruitment, was highly variable between plant lifeforms, habitats and propagule type. However, species was more variable than all of these, suggesting that some species are more conducive to translocation than others. Use of at least 500 founder individuals increased the chances of creating a viable population. Four decades after the first conservation translocations, our evaluation highlights the need to consider translocation in the broad context of conservation actions for species recovery and the need for long-term commitment to monitoring, site maintenance and documentation.This
research was funded by the National Environmental Science Program
through the Threatened Species Recovery Hu
Miscarriage and stillbirth following maternal Zika virus infection in nonhuman primates.
Zika virus (ZIKV) infection is associated with congenital defects and pregnancy loss. Here, we found that 26% of nonhuman primates infected with Asian/American ZIKV in early gestation experienced fetal demise later in pregnancy despite showing few clinical signs of infection. Pregnancy loss due to asymptomatic ZIKV infection may therefore be a common but under-recognized adverse outcome related to maternal ZIKV infection
Diversity Arrays Technology (DArT) for Pan-Genomic Evolutionary Studies of Non-Model Organisms
Background: High-throughput tools for pan-genomic study, especially the DNA microarray platform, have sparked a remarkable increase in data production and enabled a shift in the scale at which biological investigation is possible. The use of microarrays to examine evolutionary relationships and processes, however, is predominantly restricted to model or near-model organisms.
Methodology/Principal Findings: This study explores the utility of Diversity Arrays Technology (DArT) in evolutionary studies of non-model organisms. DArT is a hybridization-based genotyping method that uses microarray technology to identify and type DNA polymorphism. Theoretically applicable to any organism (even one for which no prior genetic data are available), DArT has not yet been explored in exclusively wild sample sets, nor extensively examined in a phylogenetic framework. DArT recovered 1349 markers of largely low copy-number loci in two lineages of seed-free land plants: the diploid fern Asplenium viride and the haploid moss Garovaglia elegans. Direct sequencing of 148 of these DArT markers identified 30 putative loci including four routinely sequenced for evolutionary studies in plants. Phylogenetic analyses of DArT genotypes reveal phylogeographic and substrate specificity patterns in A. viride, a lack of phylogeographic pattern in Australian G. elegans, and additive variation in hybrid or mixed samples.
Conclusions/Significance: These results enable methodological recommendations including procedures for detecting and analysing DArT markers tailored specifically to evolutionary investigations and practical factors informing the decision to use DArT, and raise evolutionary hypotheses concerning substrate specificity and biogeographic patterns. Thus DArT is a demonstrably valuable addition to the set of existing molecular approaches used to infer biological phenomena such as adaptive radiations, population dynamics, hybridization, introgression, ecological differentiation and phylogeography
Factors contributing to attrition behavior in diabetes self-management programs: A mixed method approach
<p>Abstract</p> <p>Background</p> <p>Diabetes self-management education is a critical component in diabetes care. Despite worldwide efforts to develop efficacious DSME programs, high attrition rates are often reported in clinical practice. The objective of this study was to examine factors that may contribute to attrition behavior in diabetes self-management programs.</p> <p>Methods</p> <p>We conducted telephone interviews with individuals who had Type 2 diabetes (n = 267) and attended a diabetes education centre. Multivariable logistic regression was performed to identify factors associated with attrition behavior. Forty-four percent of participants (n = 118) withdrew prematurely from the program and were asked an open-ended question regarding their discontinuation of services. We used content analysis to code and generate themes, which were then organized under the Behavioral Model of Health Service Utilization.</p> <p>Results</p> <p>Working full and part-time, being over 65 years of age, having a regular primary care physician or fewer diabetes symptoms were contributing factors to attrition behaviour in our multivariable logistic regression. The most common reasons given by participants for attrition from the program were conflict between their work schedules and the centre's hours of operation, patients' confidence in their own knowledge and ability when managing their diabetes, apathy towards diabetes education, distance to the centre, forgetfulness, regular physician consultation, low perceived seriousness of diabetes, and lack of familiarity with the centre and its services. There was considerable overlap between our quantitative and qualitative results.</p> <p>Conclusion</p> <p>Reducing attrition behaviour requires a range of strategies targeted towards delivering convenient and accessible services, familiarizing individuals with these services, increasing communication between centres and their patients, and creating better partnerships between centres and primary care physicians.</p
A multi-level system quality improvement intervention to reduce racial disparities in hypertension care and control: study protocol.
PMC3680084Abstract
BACKGROUND:
Racial disparities in blood pressure control have been well documented in the United States. Research suggests that many factors contribute to this disparity, including barriers to care at patient, clinician, healthcare system, and community levels. To date, few interventions aimed at reducing hypertension disparities have addressed factors at all of these levels. This paper describes the design of Project ReD CHiP (Reducing Disparities and Controlling Hypertension in Primary Care), a multi-level system quality improvement project. By intervening on multiple levels, this project aims to reduce disparities in blood pressure control and improve guideline concordant hypertension care.
METHODS:
Using a pragmatic trial design, we are implementing three complementary multi-level interventions designed to improve blood pressure measurement, provide patient care management services and offer expanded provider education resources in six primary care clinics in Baltimore, Maryland. We are staggering the introduction of the interventions and will use Statistical Process Control (SPC) charting to determine if there are changes in outcomes at each clinic after implementation of each intervention. The main hypothesis is that each intervention will have an additive effect on improvements in guideline concordant care and reductions in hypertension disparities, but the combination of all three interventions will result in the greatest impact, followed by blood pressure measurement with care management support, blood pressure measurement with provider education, and blood pressure measurement only. This study also examines how organizational functioning and cultural competence affect the success of the interventions.
DISCUSSION:
As a quality improvement project, Project ReD CHiP employs a novel study design that specifically targets multi-level factors known to contribute to hypertension disparities. To facilitate its implementation and improve its sustainability, we have incorporated stakeholder input and tailored components of the interventions to meet the specific needs of the involved clinics and communities. Results from this study will provide knowledge about how integrated multi-level interventions can improve hypertension care and reduce disparities.
TRIAL REGISTRATION:
ClinicalTrials.gov NCT01566864.JH Libraries Open Access Fun
CropPol: a dynamic, open and global database on crop pollination
Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e. berry weight, number of fruits and kg per hectare, among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), Northern America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-05 (21 studies), 2006-10 (40), 2011-15 (88), and 2016-20 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA). This article is protected by copyright. All rights reserved
Genetic architecture of subcortical brain structures in 38,851 individuals
Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease
Novel genetic loci underlying human intracranial volume identified through genome-wide association
Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth
Genetic architecture of subcortical brain structures in 38,851 individuals
Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease
- …