30 research outputs found

    Comparação dos Fluxos Noturnos de Co2 e Calor Sensível em Manaus e São Gabriel da Cachoeira

    Get PDF
    Comparação dos fluxos noturnos de CO2 e calor sensívelem Manaus e São Gabriel da Cachoeir

    Nighttime wind and scalar variability within and above an Amazonian canopy

    Get PDF
    Nocturnal turbulent kinetic energy (TKE) and fluxes of energy, CO2 and O3 between the Amazon forest and the atmosphere are evaluated for a 20-day campaign at the Amazon Tall Tower Observatory (ATTO) site. The distinction of these quantities between fully turbulent (weakly stable) and intermittent (very stable) nights is discussed. Spectral analysis indicates that low-frequency, nonturbulent fluctuations are responsible for a large portion of the variability observed on intermittent nights. In these conditions, the lowfrequency exchange may dominate over the turbulent transfer. In particular, we show that within the canopy most of the exchange of CO2 and H2O happens on temporal scales longer than 100 s. At 80 m, on the other hand, the turbulent fluxes are almost absent in such very stable conditions, suggesting a boundary layer shallower than 80 m. The relationship between TKE and mean winds shows that the stable boundary layer switches from the very stable to the weakly stable regime during intermittent bursts of turbulence. In general, fluxes estimated with long temporal windows that account for low-frequency effects are more dependent on the stability over a deeper layer above the forest than they are on the stability between the top of the canopy and its interior, suggesting that low-frequency processes are controlled over a deeper layer above the forest. © Author(s) 2018

    An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08)

    Get PDF
    The Amazon Basin provides an excellent environment for studying the sources, transformations, and properties of natural aerosol particles and the resulting links between biological processes and climate. With this framework in mind, the Amazonian Aerosol Characterization Experiment (AMAZE-08), carried out from 7 February to 14 March 2008 during the wet season in the central Amazon Basin, sought to understand the formation, transformations, and cloud-forming properties of fine- and coarse-mode biogenic aerosol particles, especially as related to their effects on cloud activation and regional climate. Special foci included (1) the production mechanisms of secondary organic components at a pristine continental site, including the factors regulating their temporal variability, and (2) predicting and understanding the cloud-forming properties of biogenic particles at such a site. In this overview paper, the field site and the instrumentation employed during the campaign are introduced. Observations and findings are reported, including the large-scale context for the campaign, especially as provided by satellite observations. New findings presented include: (i) a particle number-diameter distribution from 10 nm to 10 Î1/4m that is representative of the pristine tropical rain forest and recommended for model use; (ii) the absence of substantial quantities of primary biological particles in the submicron mode as evidenced by mass spectral characterization; (iii) the large-scale production of secondary organic material; (iv) insights into the chemical and physical properties of the particles as revealed by thermodenuder-induced changes in the particle number-diameter distributions and mass spectra; and (v) comparisons of ground-based predictions and satellite-based observations of hydrometeor phase in clouds. A main finding of AMAZE-08 is the dominance of secondary organic material as particle components. The results presented here provide mechanistic insight and quantitative parameters that can serve to increase the accuracy of models of the formation, transformations, and cloud-forming properties of biogenic natural aerosol particles, especially as related to their effects on cloud activation and regional climate. © 2010 Author(s)

    Estimativa do índice de área Foliar (IAF) e biomassa em pastagem no estado de Rondônia, Brasil

    Get PDF
    Medidas mensais da altura da pastagem, biomassa total, variações de biomassa viva e morta, a área específica foliar (SLA) e o Índice de Área de Folha (IAF) de fevereiro de 1999 a janeiro de 2005 na Fazenda Nossa Senhora (FNS) e em Rolim de Moura (RDM) entre Fevereiro a Março de 1999, Rondônia, Brasil. A pastagem predominante é Urochloa brizantha (Hochst. ex A. Rich) R. D. Webster (99% na FNS e 76% em RDM), com pequenas manchas de Urochloa humidicula (Rendle). A altura média anual da grama foi de ~0,16 m. Com o pastejo, o mínimo mensal foi de 0,09 m (estação seca) e máximo de 0,3 m sem pastejo (estação úmida). O IAF, biomassa total, material morto, vivo e SLA tiveram valores médios de 2,5 m2 m-2 , 2202 kg ha-1, 2916 kg ha-1 e 19 m2 kg-1 respectivamente. A média mensal da biomassa foi 4224 kg ha-1 em 2002 e 6667 kg ha-1 em 2003. Grande variação sazonal do material vivo e morto, sendo mais alto o vivo durante a estação úmida (3229 contra 2529 kg ha-1), sendo o morto maior durante a seca (2542 contra 1894 kg ha-1). O nível de água no solo variou de -3,1 a -6,5 m durante as estações. Em médias anuais os IAF foram de 1,4 em 2000 a 2,8 em 2003 e o SLA entre 16,3 m2 kg-1 em 1999 e 20,4 m2 kg-1 em 2001. As observações do Albedo variaram de 0,18 para 0,16 em relação aos altos valores de IAF

    The Amazon Tall Tower Observatory (ATTO): Overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols

    Get PDF
    The Amazon Basin plays key roles in the carbon and water cycles, climate change, atmospheric chemistry, and biodiversity. It has already been changed significantly by human activities, and more pervasive change is expected to occur in the coming decades. It is therefore essential to establish long-term measurement sites that provide a baseline record of present-day climatic, biogeochemical, and atmospheric conditions and that will be operated over coming decades to monitor change in the Amazon region, as human perturbations increase in the future. The Amazon Tall Tower Observatory (ATTO) has been set up in a pristine rain forest region in the central Amazon Basin, about 150 km northeast of the city of Manaus. Two 80 m towers have been operated at the site since 2012, and a 325 m tower is nearing completion in mid-2015. An ecological survey including a biodiversity assessment has been conducted in the forest region surrounding the site. Measurements of micrometeorological and atmospheric chemical variables were initiated in 2012, and their range has continued to broaden over the last few years. The meteorological and micrometeorological measurements include temperature and wind profiles, precipitation, water and energy fluxes, turbulence components, soil temperature profiles and soil heat fluxes, radiation fluxes, and visibility. A tree has been instrumented to measure stem profiles of temperature, light intensity, and water content in cryptogamic covers. The trace gas measurements comprise continuous monitoring of carbon dioxide, carbon monoxide, methane, and ozone at five to eight different heights, complemented by a variety of additional species measured during intensive campaigns (e.g., VOC, NO, NO2, and OH reactivity). Aerosol optical, microphysical, and chemical measurements are being made above the canopy as well as in the canopy space. They include aerosol light scattering and absorption, fluorescence, number and volume size distributions, chemical composition, cloud condensation nuclei (CCN) concentrations, and hygroscopicity. In this paper, we discuss the scientific context of the ATTO observatory and present an overview of results from ecological, meteorological, and chemical pilot studies at the ATTO site. © Author(s) 2015

    Picos na velocidade do vento e sua relação com aumentos em fluxos de escalares na atmosfera tropical noturna: Estudo de caso

    No full text
    Some physical aspects related to the occurrence of nocturnal instability-inducing intense peaks in wind speed (here abbreviated by PV.) in the tropical atmosphere above forest were investigated. Such phenomena cause strong variations in turbulent signals, occurrence of strong turbulence regimes, and significant increases in scalar fluxes. Was found that these events that occur during strong turbulence regimes can be preceded and succeeded by low frequency oscillations in environmental variables and that the significant increase in scalar fluxes observed is associated with the existence of a relative maximum wind speed value (). Procedures are applied to the data used here to enable the construction of phase space diagrams in order to better analyze the increase in amplitude of low frequency oscillations observed before PV outbreak, as well as the decrease in amplitude after PV. The aforementioned phase diagrams are used to obtain repulsor and attractor limit cycles, which respectively precede and succeed the peaks in wind speed. Weather radar images are also used to further investigate the studied atmospheric phenomenon.Foram investigados alguns aspectos físicos relacionados à ocorrência de picos intensos na velocidade do vento indutores de instabilidade (aqui abreviados por picos de vento PV) noturnos na atmosfera tropical acima de floresta. Tais fenômenos causam fortes variações nos sinais turbulentos, ocorrência de regimes de turbulência forte, além de aumentos significativos nos fluxos de escalares. Foi verificado que esses eventos que ocorrem durante regimes de turbulência forte podem ser precedidos e sucedidos por oscilações de baixa frequência nas variáveis ambientais e que o aumento significativo nos fluxos de escalares verificado está associado à existência de um valor máximo relativo da velocidade do vento (). São aplicados procedimentos aos dados aqui utilizados de modo a possibilitar a construção de diagramas em espaços de fase a fim de melhor analisar o aumento na amplitude das oscilações de baixa frequência observado antes da eclosão do PV, bem como a diminuição da amplitude verificada após o PV. São utilizados os diagramas de fase supramencionados para a obtenção de ciclos repulsores e atratores, os quais respectivamente antecedem e sucedem ao PV. Também são utilizadas imagens de radar meteorológico para melhor investigar o fenômeno atmosférico estudado

    Detection of Extreme Phenomena in the Stable Boundary Layer over the Amazonian Forest

    No full text
    We apply different methods for detection of extreme phenomena (EP) in air-turbulent time series measured in the nocturnal boundary layer above the Amazon forest. The methods used were: (a) a Morlet complex wavelet transform, which is often used in analysis of non-linear application processes. Through the use of the wavelet, it is possible to observe a phase singularity that involves a strong interaction between an extensive range of scales; (b) recurrence plot tests, which were used to identify a sudden change between different stable atmospheric states. (c) statistical analysis of early-warning signals, which verify simultaneous increases in the autocorrelation function and in the variance in the state variable; and (d) analysis of wind speed versus turbulent kinetic energy to identify different turbulent regimes in the stable boundary layer. We found it is adequate to use a threshold to classify the cases of strong turbulence regime, as a result of the occurrence of EP in the tropical atmosphere. All methods used corroborate and indicate synergy between events that culminate in what we classify as EP of the stable boundary layer above the tropical forest

    Comparing the Air Turbulence above Smooth and Rough Surfaces in the Amazon Region

    No full text
    The goal of this work is to compare the main air turbulence characteristics of two common areas in the Amazonian landscape: a dense forest (rough surface) and a water surface (smooth surface). Using wind components data collected at high frequency by sonic anemometers located just above these surfaces, turbulence intensity and power spectra, temporal and length scales of the eddies, as well as the main terms of the TKE budget (TKE = turbulent kinetic energy) were evaluated for each surface type. The results showed that in general, the air turbulence intensity above the forest was higher than above the lake during the daytime, due to the high efficiency of the forest in absorbing the momentum of the turbulent flow. During the nighttime, the situation was reversed, with greater air turbulence intensity above the lake, except in some periods in which intermittent turbulence bursts occured above the forest
    corecore