257 research outputs found

    Untangling hydrological pathways and nitrate sources by chemical appraisal in a stream network of a reservoir catchment

    Get PDF
    The knowledge of water source contributions to streamflow is important for understanding chemical contamination origins and the status of biogeochemical cycling in stream networks of catchments. In this study, we evaluated whether a limited number of spatially distributed geochemical tracer data sampled during different hydrological seasons were sufficient to quantify water flow pathways and nitrate sources in a catchment. Six geochemical water constituents (δ<sup>2</sup>H, δ<sup>18</sup>O, Cl<sup>−</sup>, SO<sup>2−</sup><sub>4</sub>, Na<sup>+</sup>, NO<sup>−</sup><sub>3</sub> and K<sup>+</sup>) of precipitation, stream water, alluvial sediment pore water and shallow groundwater of a 352 km<sup>2</sup> agricultural catchment in the Alentejo region of Portugal were analysed. Exploratory data analysis and end-member mixing analysis (EMMA) were performed to estimate the water source mixing proportions. Residual analysis of principal components was used to identify the appropriate geochemical tracers and the number of end-members (water sources and flow paths), and their proportional contributions to streamflow were quantified. Spearman's rank correlation analysis was further used to identify nitrate origins in the streamflow. Results showed that, when using data from both wet and dry seasons, streamflow chemistry was strongly influenced by shallow groundwater. When only wet season data were modelled, streamflow chemistry was controlled and generated by three end-members: shallow groundwater, alluvial sediment pore water and precipitation. Isotope signatures of stream water were located mostly below the local meteoric water line (LMWL) and plotted along a local evaporation line (LEL), reflecting the permanence in the streamflow of shallow groundwater subjected to prior evaporation. Interpretation of isotope signatures during summer showed an isotopic enrichment in both streamflow and shallow groundwater. Measured and historical stream nitrate concentrations appeared to be strongly related to shallow groundwater. In addition, two hydrochemical data outliers for almost every solute from two sample points were identified by the analysis and could be related to local waste water outfalls. The results of this study have improved our understanding of water source contributions to streamflow in the catchment, and also yielded indications of nitrate consumption related to biogeochemical processes in the streamflow network. Moreover, we could conclude that the relatively limited geochemical spatial sample database used in this study was an adequate input for the end-member mixing analysis and diagnostic tools to quantify water sources and nitrate origins in the streamflow of the catchment

    Technique for validating remote sensing products of water quality

    Get PDF
    Remote sensing of water quality is initiated as an additional part of the on going activities of the EAGLE2006 project. Within this context intensive in-situ and airborne measurements campaigns were carried out over the Wolderwijd and Veluwemeer natural waters. However, in-situ measurements and image acquisitions were not simultaneous. This poses some constraints on validating air/space-borne remote sensing products of water quality. Nevertheless, the detailed insitu measurements and hydro-optical model simulations provide a bench mark for validating remote sensing products. That is realized through developing a stochastic technique to quantify the uncertainties on the retrieved aquatic inherent optical properties (IOP). The output of the proposed technique is applied to validate remote sensing products of water quality. In this processing phase, simulations of the radiative transfer in the coupled atmosphere-water system are performed to generate spectra at-sensor-level. The upper and the lower boundaries of perturbations, around each recorded spectrum, are then modelled as function of residuals between simulated and measured spectra. The perturbations are parameterized as a function of model approximations/inversion, sensor-noise and atmospheric residual signal. All error sources are treated as being of stochastic nature. Three scenarios are considered: spectrally correlated (i.e. wavelength dependent) perturbations, spectrally uncorrelated perturbations and a mixed scenario of the previous two with equal probability of occurrence. Uncertainties on the retrieved IOP are quantified with the relative contribution of each perturbation component to the total error budget of the IOP. This technique can be used to validate earth observation products of water quality in remote areas where few or no in– situ measurements are available

    Effects of heatwaves on lake composition derived from satellite observations

    Get PDF
    As a consequence of the ever-increasing global temperature, not only the air, and surface, but also lakes are warming up. This is expressed by steadily increasing base temperatures, but also in increases in the frequency and intensity of lake heatwaves. Land-based organisms may adapt to a changing climate by migrating to more suitable habitats, but this is usually not an option for lake-dwellers. Because many livelihoods depend on the ecosystem services of lakes, understanding the effects of heatwaves on lake composition form an important input for the assessment of climate change impacts and design of adaptation strategies.Using satellite data of lake temperature and water quality observations, we here investigate the effects of heatwaves on lake composition by studying the relationship between heatwaves and water quality variables of temperature, chlorophyll-a , colored dissolved organic matter, and suspended particulate matter . The latter can be used to infer effects of heat stress on health and populations of phyto- and zooplankton communities and higher aquatic organisms. Satellite-based data sets provided by the Climate Change Initiative of the European Space Agency, CCI-Lakes (https://climate.esa.int/en/projects/lakes/) are used in conjunction with the 2SeaColor model to determine depth-dependent attenuation coefficients and water quality variables.These data are complemented with and compared to data from Copernicus Global Land Services (https://land.copernicus.eu/global/products/). The co-occurrence of heatwaves and changes in lake composition is investigated using statistical tools, and the causality is examined by comparison with biophysical models. The results from this study are discussed in light of previously published projected changes in heatwave frequency and intensity

    Synthetic Elastography using B-mode Ultrasound through a Deep Fully-Convolutional Neural Network

    Full text link
    Shear-wave elastography (SWE) permits local estimation of tissue elasticity, an important imaging marker in biomedicine. This recently-developed, advanced technique assesses the speed of a laterally-travelling shear wave after an acoustic radiation force "push" to estimate local Young's moduli in an operator-independent fashion. In this work, we show how synthetic SWE (sSWE) images can be generated based on conventional B-mode imaging through deep learning. Using side-by-side-view B-mode/SWE images collected in 50 patients with prostate cancer, we show that sSWE images with a pixel-wise mean absolute error of 4.5+/-0.96 kPa with regard to the original SWE can be generated. Visualization of high-level feature levels through t-Distributed Stochastic Neighbor Embedding reveals substantial overlap between data from two different scanners. Qualitatively, we examined the use of the sSWE methodology for B-mode images obtained with a scanner without SWE functionality. We also examined the use of this type of network in elasticity imaging in the thyroid. Limitations of the technique reside in the fact that networks have to be retrained for different organs, and that the method requires standardization of the imaging settings and procedure. Future research will be aimed at development of sSWE as an elasticity-related tissue typing strategy that is solely based on B-mode ultrasound acquisition, and the examination of its clinical utility.Comment: (c) 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Reversal of Hartmann's procedure through the stomal side: A new even more minimal invasive technique

    Get PDF
    Background: Several minimal invasive, mainly laparoscopic-assisted, techniques for reversal of Hartmann's procedure (HP) have been published. The purpose of this pilot study was to assess a minimal invasive procedure through the stomal site that may compare favorably with open or laparoscopic-assisted procedures in terms of operative time, hospital stay and postoperative complications. Methods: HP reversal through the stomal side was attempted in 13 consecutive patients. Lysis of intra-abdominal adhesions was done manually through an incision at the formal stoma side, without direct vision between thumb and index finger. The rectal stump was identified intra-abdominally using a transanal rigid club. A manually controlled stapled end-to-end colorectal anastomosis was created. Results: Mean duration of operation was 81 min (range 58-109 min); mean hospital stay was 4.2 days (range 2-7 days). In two patients the procedure was converted because of strong adhesions in the lower pelvic cavity around the rectal stump that could not be lysed manually safely. No complications occurred in the patients in whom reversal was completely done through the stomal site. Conclusions: In our opinion, restoration of intestinal continuity through the stomal side after HP is a feasible operation, without need for additional incisions. In the hands of a specialist gastrointestinal surgeon this technique can be attempted in all patients, as conversion to a laparoscopic-assisted or an open procedure can be performed when necessary

    Pulmonary Function Testing and Complications of Laparoscopic Bariatric Surgery

    Get PDF
    __Abstract__ __Background__: Obesity is associated with respiratory symptoms and impaired pulmonary function, which could increase the risk of complications after bariatric surgery. The purpose of this study is to assess the relationship between pulmonary function parameters before, and the risk of complications after, laparoscopic bariatric surgery. Methods: This prospective study included patients (age 18-60, BMI >35 kg/m2), who were eligible for bariatric surgery. Spirometry was performed in all patients. Complications up to 30 days after bariatric surgery were recorded. Results: Four hundred eighty-five patients were included (304 laparoscopic sleeve gastrectomy, 181 laparoscopic gastric bypass). There were 53 complications (8 pulmonary, 27 surgical, 14 infectious, 4 other) in 50 patients (10 %). There were 35 re-admissions (7.2 %), and 17 re-laparoscopies (3.5 %). Subjects with and without complications did not differ significantly with respect to demographics, weight, BMI, abdominal circumference or fat percentage. Subjects with complications had a significantly lower mean FEV1(mean 86.9 % predicted) and FVC (95.6 % predicted) compared to patients without complications (95.9 % predicted, p = 0.005, and 100.1 % predicted, p = 0.045, respectively). After adjustment for age, gender, BMI, and smoking, abnormal spirometry value remained the single predictive covariable of postoperative complications: FEV1/FVC <70 % adjusted OR 3.1 (95%CI 1.4-6.8, p = 0.006) and ΔFEV1≥12 % adjusted OR 2.9 (95 %CI 1.3-6.6, p = 0.010). Conclusions: The risk of pulmonary complications after laparoscopic bariatric surgery is low. However, subjects with abnormal spirometry test results have a threefold risk of complications after laparoscopic bariatric surgery. Preoperative pulmonary function testing might be useful to predict the risk of complications of laparoscopic bariatric surgery

    Marine Citizen Science: Current State in Europe and New Technological Developments

    Get PDF
    Marine citizen science is emerging with promising opportunities for science, policy and public but there is still no comprehensive overview of the current state in Europe. Based on 127 projects identified for the North Sea area we estimate there might be as much as 500 marine and coastal citizen science projects running in Europe, i.e., one marine citizen science project per 85 km of coastline, with an exponential growth since 1990. Beach-based projects are more accessible and hence most popular (60% of the projects), and the mean duration of the projects is 18–20 years. Current trends, topics, organizers, aims, and types of programme in terms of participation are presented in this overview. Progress in marine citizen science is specially enabled and promoted through technological developments. Recent technological advances and best practise examples are provided here, untapping the potential of smart mobile apps, do-it-yourself (DIY) technologies, drones, and artificial intelligence (AI) web servicesVersión del edito

    Visually estimated ejection fraction by two dimensional and triplane echocardiography is closely correlated with quantitative ejection fraction by real-time three dimensional echocardiography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visual assessment of left ventricular ejection fraction (LVEF) is often used in clinical routine despite general recommendations to use quantitative biplane Simpsons (BPS) measurements. Even thou quantitative methods are well validated and from many reasons preferable, the feasibility of visual assessment (eyeballing) is superior. There is to date only sparse data comparing visual EF assessment in comparison to quantitative methods available. The aim of this study was to compare visual EF assessment by two-dimensional echocardiography (2DE) and triplane echocardiography (TPE) using quantitative real-time three-dimensional echocardiography (RT3DE) as the reference method.</p> <p>Methods</p> <p>Thirty patients were enrolled in the study. Eyeballing EF was assessed using apical 4-and 2 chamber views and TP mode by two experienced readers blinded to all clinical data. The measurements were compared to quantitative RT3DE.</p> <p>Results</p> <p>There were an excellent correlation between eyeballing EF by 2D and TP vs 3DE (r = 0.91 and 0.95 respectively) without any significant bias (-0.5 ± 3.7% and -0.2 ± 2.9% respectively). Intraobserver variability was 3.8% for eyeballing 2DE, 3.2% for eyeballing TP and 2.3% for quantitative 3D-EF. Interobserver variability was 7.5% for eyeballing 2D and 8.4% for eyeballing TP.</p> <p>Conclusion</p> <p>Visual estimation of LVEF both using 2D and TP by an experienced reader correlates well with quantitative EF determined by RT3DE. There is an apparent trend towards a smaller variability using TP in comparison to 2D, this was however not statistically significant.</p
    corecore