10 research outputs found

    Circulating calprotectin levels four months after severe and non-severe COVID-19.

    Get PDF
    BACKGROUND Calprotectin is an inflammatory marker mainly released by activated neutrophils that is increased in acute severe COVID-19. After initial recovery, some patients have persistent respiratory impairment with reduced diffusion capacity of the lungs for carbon monoxide (DLCO) months after infection. Underlying causes of this persistent impairment are unclear. We aimed to investigate the correlation between circulating calprotectin, persistent lung functional impairment and intensive care unit (ICU) stay after COVID-19 in two university hospital centres in Switzerland. METHODS Calprotectin levels were measured in serum from 124 patients (50% male) from the Bern cohort (post-ICU and non-ICU patients) and 68 (76% male) from the Lausanne cohort (only post-ICU patients) four months after COVID-19. Calprotectin was correlated with clinical parameters. Multivariate linear regression (MLR) was performed to evaluate the independent association of calprotectin in different models. RESULTS Overall, we found that post-ICU patients, compared to non-ICU, were significantly older (age 59.4 ± 13.6 (Bern), 60.5 ± 12.0 (Lausanne) vs. 48.8 ± 13.4 years) and more obese (BMI 28.6 ± 4.5 and 29.1 ± 5.3 vs. 25.2 ± 6.0 kg/m2, respectively). 48% of patients from Lausanne and 44% of the post-ICU Bern cohort had arterial hypertension as a pre-existing comorbidity vs. only 10% in non-ICU patients. Four months after COVID-19 infection, DLCO was lower in post-ICU patients (75.96 ± 19.05% predicted Bern, 71.11 ± 18.50% Lausanne) compared to non-ICU (97.79 ± 21.70% predicted, p < 0.01). The post-ICU cohort in Lausanne had similar calprotectin levels when compared to the cohort in Bern (Bern 2.74 ± 1.15 µg/ml, Lausanne 2.49 ± 1.13 µg/ml vs. non-ICU 1.86 ± 1.02 µg/ml; p-value < 0.01). Calprotectin correlated negatively with DLCO (r= -0.290, p < 0.001) and the forced vital capacity (FVC) (r= -0.311, p < 0.001). CONCLUSIONS Serum calprotectin is elevated in post-ICU patients in two independent cohorts and higher compared to non-ICU patients four months after COVID-19. In addition, there is a negative correlation between calprotectin levels and DLCO or FVC. The relationship between inflammation and lung functional impairment needs further investigations. TRIAL REGISTRATION NCT04581135

    Anti-fibrotic Effects Of Pirfenidone And Rapamycin In Primary Ipf Fibroblasts And Human Alveolar Epithelial Cells

    No full text
    Background: Pirfenidone, a pleiotropic anti-fibrotic treatment, has been shown to slow down disease progression of idiopathic pulmonary fibrosis (IPF), a fatal and devastating lung disease. Rapamycin, an inhibitor of fibroblast proliferation could be a potential anti-fibrotic drug to improve the effects of pirfenidone. Methods: Primary lung fibroblasts from IPF patients and human alveolar epithelial cells (A549) were treated in vitro with pirfenidone and rapamycin in the presence or absence of transforming growth factor beta 1 (TGF-beta). Extracellular matrix protein and gene expression of markers involved in lung fibrosis (tenascin-c, fibronectin, collagen I (COM Al], collagen III [COL3A1] and alpha-smooth muscle actin [alpha-SMA]) were analyzed. A cell migration assay in pirfenidone, rapamycin and TGF-beta-containing media was performed. Results: Gene and protein expression of tenascin-c and fibronectin of fibrotic fibroblasts were reduced by pirfenidone or rapamycin treatment Pirfenidone-rapamycin treatment did not revert the epithelial to mesenchymal transition pathway activated by TGF-beta. However, the drug combination significantly abrogated fibroblast to myofibroblast transition. The inhibitory effect of pirfenidone on fibroblast migration in the scratch-wound assay was potentiated by rapamycin combination. Conclusions: These findings indicate that the combination of pirfenidone and rapamycin widen the inhibition range of fibrogenic markers and prevents fibroblast migration. These results would open a new line of research for an anti-fibrotic combination therapeutic approach

    Resequencing study confirms host defense and cell senescence gene variants contribute to the risk of idiopathic pulmonary fibrosis

    No full text
    RATIONALE: Several common and rare genetic variants have been associated with Idiopathic pulmonary fibrosis, a progressive fibrotic condition that is localized to the lung. OBJECTIVE: To develop an integrated understanding of the rare and common variants located in multiple loci that have been reported to contribute to the risk of disease. METHODS: We performed deep targeted resequencing (3.69 Mb of DNA) in cases (N=3,624) and controls (N=4,442) across genes and regions previously associated with disease. We tested for association between disease and a) individual common variants via logistic regression and b) groups of rare variants via a sequence kernel association test. MEASUREMENTS AND MAIN RESULTS: Statistically significant common variant association signals occurred in all 10 of the regions chosen based on genome-wide association studies. The strongest risk variant is the MUC5B promoter variant, rs35705950, with an OR of 5.45 (95% CI: 4.91-6.06) for one copy of the risk allele and 18.68 (95% CI: 13.34-26.17) for two copies of the risk allele (p=9.60 x 10-295). In addition to identifying for the first time that rare variation in FAM13A is associated with disease, we confirmed the role of rare variation in risk of IPF in the TERT and RTEL1 gene regions, and found that the FAM13A and TERT regions have independent common and rare variant signals. CONCLUSIONS: A limited number of common and rare variants contribute to the risk of idiopathic pulmonary fibrosis in each of the resequencing regions; these genetic variants focus on biological mechanisms of host defense and cell senescence

    Resequencing study confirms that host defense and cell senescence gene variants contribute to the risk of idiopathic pulmonary fibrosis

    No full text
    Rationale: Several common and rare genetic variants have been associated with idiopathic pulmonary fibrosis, a progressive fibrotic condition that is localized to the lung. Objectives: To develop an integrated understanding of the rare and common variants located in multiple loci that have been reported to contribute to the risk of disease. Methods: We performed deep targeted resequencing (3.69 Mb of DNA) in cases (n = 3,624) and control subjects (n = 4,442) across genes and regions previously associated with disease. We tested for associations between disease and 1) individual common variants via logistic regression and 2) groups of rare variants via sequence kernel association tests. Measurements and Main Results: Statistically significant common variant association signals occurred in all 10 of the regions chosen based on genome-wide association studies. The strongest risk variant is the MUC5B promoter variant rs35705950, with an odds ratio of 5.45 (95% confidence interval, 4.91–6.06) for one copy of the risk allele and 18.68 (95% confidence interval, 13.34–26.17) for two copies of the risk allele (P = 9.60 × 10−295). In addition to identifying for the first time that rare variation in FAM13A is associated with disease, we confirmed the role of rare variation in the TERT and RTEL1 gene regions in the risk of IPF, and found that the FAM13A and TERT regions have independent common and rare variant signals. Conclusions: A limited number of common and rare variants contribute to the risk of idiopathic pulmonary fibrosis in each of the resequencing regions, and these genetic variants focus on biological mechanisms of host defense and cell senescence

    Resequencing Study Confirms That Host Defense and Cell Senescence Gene Variants Contribute to the Risk of Idiopathic Pulmonary Fibrosis.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowRationale: Several common and rare genetic variants have been associated with idiopathic pulmonary fibrosis, a progressive fibrotic condition that is localized to the lung. Objectives: To develop an integrated understanding of the rare and common variants located in multiple loci that have been reported to contribute to the risk of disease. Methods: We performed deep targeted resequencing (3.69 Mb of DNA) in cases (n = 3,624) and control subjects (n = 4,442) across genes and regions previously associated with disease. We tested for associations between disease and 1) individual common variants via logistic regression and 2) groups of rare variants via sequence kernel association tests. Measurements and Main Results: Statistically significant common variant association signals occurred in all 10 of the regions chosen based on genome-wide association studies. The strongest risk variant is the MUC5B promoter variant rs35705950, with an odds ratio of 5.45 (95% confidence interval, 4.91-6.06) for one copy of the risk allele and 18.68 (95% confidence interval, 13.34-26.17) for two copies of the risk allele (P = 9.60 × 10-295). In addition to identifying for the first time that rare variation in FAM13A is associated with disease, we confirmed the role of rare variation in the TERT and RTEL1 gene regions in the risk of IPF, and found that the FAM13A and TERT regions have independent common and rare variant signals. Conclusions: A limited number of common and rare variants contribute to the risk of idiopathic pulmonary fibrosis in each of the resequencing regions, and these genetic variants focus on biological mechanisms of host defense and cell senescence.National Center for Research Resources National Heart, Lung, and Blood Institut
    corecore