36 research outputs found

    Chemical diplomacy in male tilapia: urinary signal increases sex hormone and decreases aggression

    Get PDF
    Androgens, namely 11-ketotestosterone (11KT), have a central role in male fish reproductive physiology and are thought to be involved in both aggression and social signalling. Aggressive encounters occur frequently in social species, and fights may cause energy depletion, injury and loss of social status. Signalling for social dominance and fighting ability in an agonistic context can minimize these costs. Here, we test the hypothesis of a 'chemical diplomacy' mechanism through urinary signals that avoids aggression and evokes an androgen response in receiver males of Mozambique tilapia (Oreochromis mossambicus). We show a decoupling between aggression and the androgen response; males fighting their mirror image experience an unresolved interaction and a severe drop in urinary 11KT. However, if concurrently exposed to dominant male urine, aggression drops but urinary 11KT levels remain high. Furthermore, 11KT increases in males exposed to dominant male urine in the absence of a visual stimulus. The use of a urinary signal to lower aggression may be an adaptive mechanism to resolve disputes and avoid the costs of fighting. As dominance is linked to nest building and mating with females, the 11KT response of subordinate males suggests chemical eavesdropping, possibly in preparation for parasitic fertilizations.info:eu-repo/semantics/publishedVersio

    Steroid Concentrations in Plasma, Whole Blood and Brain: Effects of Saline Perfusion to Remove Blood Contamination from Brain

    Get PDF
    The brain and other organs locally synthesize steroids. Local synthesis is suggested when steroid levels are higher in tissue than in the circulation. However, measurement of both circulating and tissue steroid levels are subject to methodological considerations. For example, plasma samples are commonly used to estimate circulating steroid levels in whole blood, but steroid levels in plasma and whole blood could differ. In addition, tissue steroid measurements might be affected by blood contamination, which can be addressed experimentally by using saline perfusion to remove blood. In Study 1, we measured corticosterone and testosterone (T) levels in zebra finch (Taeniopygia guttata) plasma, whole blood, and red blood cells (RBC). We also compared corticosterone in plasma, whole blood, and RBC at baseline and after 60 min restraint stress. In Study 2, we quantified corticosterone, dehydroepiandrosterone (DHEA), T, and 17β-estradiol (E2) levels in the brains of sham-perfused or saline-perfused subjects. In Study 1, corticosterone and T concentrations were highest in plasma, significantly lower in whole blood, and lowest in RBC. In Study 2, saline perfusion unexpectedly increased corticosterone levels in the rostral telencephalon but not other regions. In contrast, saline perfusion decreased DHEA levels in caudal telencephalon and diencephalon. Saline perfusion also increased E2 levels in caudal telencephalon. In summary, when comparing local and systemic steroid levels, the inclusion of whole blood samples should prove useful. Moreover, blood contamination has little or no effect on measurement of brain steroid levels, suggesting that saline perfusion is not necessary prior to brain collection. Indeed, saline perfusion itself may elevate and lower steroid concentrations in a rapid, region-specific manner

    Evolution of ligand specificity in vertebrate corticosteroid receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Corticosteroid receptors include mineralocorticoid (MR) and glucocorticoid (GR) receptors. Teleost fishes have a single MR and duplicate GRs that show variable sensitivities to mineralocorticoids and glucocorticoids. How these receptors compare functionally to tetrapod MR and GR, and the evolutionary significance of maintaining two GRs, remains unclear.</p> <p>Results</p> <p>We used up to seven steroids (including aldosterone, cortisol and 11-deoxycorticosterone [DOC]) to compare the ligand specificity of the ligand binding domains of corticosteroid receptors between a mammal (<it>Mus musculus</it>) and the midshipman fish (<it>Porichthys notatus</it>), a teleost model for steroid regulation of neural and behavioral plasticity. Variation in mineralocorticoid sensitivity was considered in a broader phylogenetic context by examining the aldosterone sensitivity of MR and GRs from the distantly related daffodil cichlid (<it>Neolamprologus pulcher</it>), another teleost model for neurobehavioral plasticity. Both teleost species had a single MR and duplicate GRs. All MRs were sensitive to DOC, consistent with the hypothesis that DOC was the initial ligand of the ancestral MR. Variation in GR steroid-specificity corresponds to nine identified amino acid residue substitutions rather than phylogenetic relationships based on receptor sequences.</p> <p>Conclusion</p> <p>The mineralocorticoid sensitivity of duplicate GRs in teleosts is highly labile in the context of their evolutionary phylogeny, a property that likely led to neo-functionalization and maintenance of two GRs.</p

    The third international stroke trial (IST-3) of thrombolysis for acute ischaemic stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intravenous recombinant tissue plasminogen activator (rt-PA) is approved for use in selected patients with ischaemic stroke within 3 hours of symptom onset. IST-3 seeks to determine whether a wider range of patients may benefit.</p> <p>Design</p> <p>International, multi-centre, prospective, randomized, open, blinded endpoint (PROBE) trial of intravenous rt-PA in acute ischaemic stroke. Suitable patients must be assessed and able to start treatment within 6 hours of developing symptoms, and brain imaging must have excluded intracerebral haemorrhage. With 1000 patients, the trial can detect a 7% absolute difference in the primary outcome. With3500 patients, it can detect a 4.0% absolute benefit & with 6000, (mostly treated between 3 & 6 hours), it can detect a 3% benefit.</p> <p>Trial procedures</p> <p>Patients are entered into the trial by telephoning a fast, secure computerised central randomisation system or via a secure web interface. Repeat brain imaging must be performed at 24–48 hours. The scans are reviewed 'blind' by expert readers. The primary measure of outcome is the proportion of patients alive and independent (Modified Rankin 0–2) at six months (assessed via a postal questionnaire mailed directly to the patient). Secondary outcomes include: events within 7 days (death, recurrent stroke, symptomatic intracranial haemorrhage), outcome at six months (death, functional status, EuroQol).</p> <p>Trial registration</p> <p>ISRCTN25765518</p

    Neuronal Gonadotrophin-Releasing Hormone (GnRH) and Astrocytic Gonadotrophin Inhibitory Hormone (GnIH) Immunoreactivity in the Adult Rat Hippocampus

    No full text
    Gonadotrophin-releasing hormone (GnRH) and gonadotrophin inhibitory hormone (GnIH) are neuropeptides secreted by the hypothalamus that regulate reproduction. GnRH receptors are not only present in the anterior pituitary, but also are abundantly expressed in the hippocampus of rats, suggesting that GnRH regulates hippocampal function. GnIH inhibits pituitary gonadotrophin secretion and is also expressed in the hippocampus of a songbird; its role outside of the reproductive axis is not well established. In the present study, we employed immunohistochemistry to examine three forms of GnRH [mammalian GnRH-I (mGnRH-I), chicken GnRH-II (cGnRH-II) and lamprey GnRH-III (lGnRH-III)] and GnIH in the adult rat hippocampus. No mGnRH-I and cGnRH-II+ cell bodies were present in the hippocampus. Sparse mGnRH-I and cGnRH-II+ fibres were present within the CA1 and CA3 fields of the hippocampus, along the hippocampal fissure, and within the hilus of the dentate gyrus. No lGnRH-III was present in the rodent hippocampus. GnIH-immunoreactivity was present in the hippocampus in cell bodies that resembled astrocytes. Males had more GnIH+ cells in the hilus of the dentate gyrus than females. To confirm the GnIH+ cell body phenotype, we performed double-label immunofluorescence against GnIH, glial fibrillary acidic protein (GFAP) and NeuN. Immunofluorescence revealed that all GnIH+ cell bodies in the hippocampus also contained GFAP, a marker of astrocytes. Taken together, these data suggest that GnRH does not reach GnRH receptors in the rat hippocampus primarily via synaptic release. By contrast, GnIH might be synthesised locally in the rat hippocampus by astrocytes. These data shed light on the sites of action and possible functions of GnRH and GnIH outside of the hypothalamic-pituitary-gonadal axis.status: publishe
    corecore