117 research outputs found

    Specific gene expression profiles and chromosomal abnormalities are associated with infant disseminated neuroblastoma

    Get PDF
    Background: Neuroblastoma (NB) tumours have the highest incidence of spontaneous remission, especially among the stage 4s NB subgroup affecting infants. Clinical distinction of stage 4s from lethal stage 4 can be difficult, but critical for therapeutic decisions. The aim of this study was to investigate chromosomal alterations and differential gene expression amongst infant disseminated NB subgroups. Methods: Thirty-five NB tumours from patients diagnosed at < 18 months (25 stage 4 and 10 stage 4s), were evaluated by allelic and gene expression analyses. Results: All stage 4s patients underwent spontaneous remission, only 48% stage 4 patients survived despite combined modality therapy. Stage 4 tumours were 90% near-diploid/tetraploid, 44% MYCN amplified, 77% had 1p LOH (50% 1p36), 23% 11q and/or 14q LOH (27%) and 47% had 17q gain. Stage 4s were 90% near-triploid, none MYCN amplified and LOH was restricted to 11q. Initial comparison analyses between stage 4s and 4 < 12 months tumours revealed distinct gene expression profiles. A significant portion of genes mapped to chromosome 1 (P < 0.0001), 90% with higher expression in stage 4s, and chromosome 11 (P = 0.0054), 91% with higher expression in stage 4. Less definite expression profiles were observed between stage 4s and 4 < 18m, yet, association with chromosomes 1 (P < 0.0001) and 11 (P = 0.005) was maintained. Distinct gene expression profiles but no significant association with specific chromosomal region localization was observed between stage 4s and stage 4 < 18 months without MYCN amplification. Conclusion: Specific chromosomal aberrations are associated with distinct gene expression profiles which characterize spontaneously regressing or aggressive infant NB, providing the biological basis for the distinct clinical behaviour

    Differential expression of genes mapping to recurrently abnormal chromosomal regions characterize neuroblastic tumours with distinct ploidy status

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastic tumours (NBTs) represent a heterogeneous spectrum of neoplastic diseases associated with multiple genetic alterations. Structural and numerical chromosomal changes are frequent and are predictive parameters of NBTs outcome. We performed a comparative analysis of the biological entities constituted by NBTs with different ploidy status.</p> <p>Methods</p> <p>Gene expression profiling of 49 diagnostic primary NBTs with ploidy data was performed using oligonucleotide microarray. Further analyses using Quantitative Real-Time Polymerase Chain Reaction (Q-PCR); array-Comparative Genomic Hybridization (aCGH); and Fluorescent <it>in situ </it>Hybridization (FISH) were performed to investigate the correlation between aneuploidy, chromosomal changes and gene expression profiles.</p> <p>Results</p> <p>Gene expression profiling of 49 primary near-triploid and near-diploid/tetraploid NBTs revealed distinct expression profiles associated with each NBT subgroup. A statistically significant portion of genes mapped to 1p36 (<it>P </it>= 0.01) and 17p13-q21 (<it>P </it>< 0.0001), described as recurrently altered in NBTs. Over 90% of these genes showed higher expression in near-triploid NBTs and the majority are involved in cell differentiation pathways. Specific chromosomal abnormalities observed in NBTs, 1p loss, 17q and whole chromosome 17 gains, were reflected in the gene expression profiles. Comparison between gene copy number and expression levels suggests that differential expression might be only partly dependent on gene copy number. Intratumoural clonal heterogeneity was observed in all NBTs, with marked interclonal variability in near-diploid/tetraploid tumours.</p> <p>Conclusion</p> <p>NBTs with different cellular DNA content display distinct transcriptional profiles with a significant portion of differentially expressed genes mapping to specific chromosomal regions known to be associated with outcome. Furthermore, our results demonstrate that these specific genetic abnormalities are highly heterogeneous in all NBTs, and suggest that NBTs with different ploidy status may result from different mechanisms of aneuploidy driving tumourigenesis.</p

    Differential expression of genes mapping to recurrently abnormal chromosomal regions characterize neuroblastic tumours with distinct ploidy status

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastic tumours (NBTs) represent a heterogeneous spectrum of neoplastic diseases associated with multiple genetic alterations. Structural and numerical chromosomal changes are frequent and are predictive parameters of NBTs outcome. We performed a comparative analysis of the biological entities constituted by NBTs with different ploidy status.</p> <p>Methods</p> <p>Gene expression profiling of 49 diagnostic primary NBTs with ploidy data was performed using oligonucleotide microarray. Further analyses using Quantitative Real-Time Polymerase Chain Reaction (Q-PCR); array-Comparative Genomic Hybridization (aCGH); and Fluorescent <it>in situ </it>Hybridization (FISH) were performed to investigate the correlation between aneuploidy, chromosomal changes and gene expression profiles.</p> <p>Results</p> <p>Gene expression profiling of 49 primary near-triploid and near-diploid/tetraploid NBTs revealed distinct expression profiles associated with each NBT subgroup. A statistically significant portion of genes mapped to 1p36 (<it>P </it>= 0.01) and 17p13-q21 (<it>P </it>< 0.0001), described as recurrently altered in NBTs. Over 90% of these genes showed higher expression in near-triploid NBTs and the majority are involved in cell differentiation pathways. Specific chromosomal abnormalities observed in NBTs, 1p loss, 17q and whole chromosome 17 gains, were reflected in the gene expression profiles. Comparison between gene copy number and expression levels suggests that differential expression might be only partly dependent on gene copy number. Intratumoural clonal heterogeneity was observed in all NBTs, with marked interclonal variability in near-diploid/tetraploid tumours.</p> <p>Conclusion</p> <p>NBTs with different cellular DNA content display distinct transcriptional profiles with a significant portion of differentially expressed genes mapping to specific chromosomal regions known to be associated with outcome. Furthermore, our results demonstrate that these specific genetic abnormalities are highly heterogeneous in all NBTs, and suggest that NBTs with different ploidy status may result from different mechanisms of aneuploidy driving tumourigenesis.</p

    Role of the p53/p21 system in the response of human colon carcinoma cells to Doxorubicin

    Get PDF
    BACKGROUND: Colon adenocarcinomas are refractory to a number of widely used anticancer agents. Multifactorial mechanisms have been implicated in this intrinsically resistant phenotype, including deregulation of cell death pathways. In this regard, the p53 protein has a well established role in the control of tumor cell response to DNA damaging agents; however, the relationship between p53-driven genes and drug sensitivity remains controversial. The present study investigates the role of the p53/p21 system in the response of human colon carcinoma cells to treatment with the cytotoxic agent doxorubicin (DOX) and the possibility to modify the therapeutic index of DOX by modulation of p53 and/or p21 protein levels. METHODS: The relationship between p53 and p21 protein levels and the cytotoxic effect of DOX was investigated, by MTT assay and western blot analysis, in HCT116 (p53-positive) and HT29 (p53-negative) colon cancer cells. We then assessed the effects of DOX in two isogenic cell lines derived from HCT116 by abrogating the expression and/or function of p53 and p21 (HCT116-E6 and HCT116 p21-/-, respectively). Finally, we evaluated the effect of pre-treatment with the piperidine nitroxide Tempol (TPL), an agent that was reported to induce p21 expression irrespective of p53 status, on the cytotoxicity of DOX in the four cell lines. Comparisons of IC50 values and apoptotic cell percentages were performed by ANOVA and Bonferroni's test for independent samples. C.I. calculations were performed by the combination Index method. RESULTS: Our results indicate that, in the colon carcinoma cell lines tested, sensitivity to DOX is associated with p21 upregulation upon drug exposure, and DOX cytotoxicity is potentiated by pre-treatment with TPL, but only in those cell lines in which p21 can be upregulated. CONCLUSIONS: p21 induction may significantly contribute to the response of colon adenocarcinomas cells to DOX treatment; and small molecules that can exploit p53-independent pathways for p21 induction, such as TPL, may find a place in chemotherapeutic protocols for the clinical management of colorectal cancer, where p53 function is often lost, due to genetic or epigenetic defects or to post-transcriptional inactivating mechanisms

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Synthetic Lethal Screen Identifies NF-κB as a Target for Combination Therapy with Topotecan for patients with Neuroblastoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite aggressive multimodal treatments the overall survival of patients with high-risk neuroblastoma remains poor. The aim of this study was to identify novel combination chemotherapy to improve survival rate in patients with high-risk neuroblastoma.</p> <p>Methods</p> <p>We took a synthetic lethal approach using a siRNA library targeting 418 apoptosis-related genes and identified genes and pathways whose inhibition synergized with topotecan. Microarray analyses of cells treated with topotecan were performed to identify if the same genes or pathways were altered by the drug. An inhibitor of this pathway was used in combination with topotecan to confirm synergism by <it>in vitro </it>and <it>in vivo </it>studies.</p> <p>Results</p> <p>We found that there were nine genes whose suppression synergized with topotecan to enhance cell death, and the NF-κB signaling pathway was significantly enriched. Microarray analysis of cells treated with topotecan revealed a significant enrichment of NF-κB target genes among the differentially altered genes, suggesting that NF-κB pathway was activated in the treated cells. Combination of topotecan and known NF-κB inhibitors (NSC 676914 or bortezomib) significantly reduced cell growth and induced caspase 3 activity <it>in vitro</it>. Furthermore, in a neuroblastoma xenograft mouse model, combined treatment of topotecan and bortezomib significantly delayed tumor formation compared to single-drug treatments.</p> <p>Conclusions</p> <p>Synthetic lethal screening provides a rational approach for selecting drugs for use in combination therapy and warrants clinical evaluation of the efficacy of the combination of topotecan and bortezomib or other NF-κB inhibitors in patients with high risk neuroblastoma.</p

    Manipulable Objects Facilitate Cross-Modal Integration in Peripersonal Space

    Get PDF
    Previous studies have shown that tool use often modifies one's peripersonal space – i.e. the space directly surrounding our body. Given our profound experience with manipulable objects (e.g. a toothbrush, a comb or a teapot) in the present study we hypothesized that the observation of pictures representing manipulable objects would result in a remapping of peripersonal space as well. Subjects were required to report the location of vibrotactile stimuli delivered to the right hand, while ignoring visual distractors superimposed on pictures representing everyday objects. Pictures could represent objects that were of high manipulability (e.g. a cell phone), medium manipulability (e.g. a soap dispenser) and low manipulability (e.g. a computer screen). In the first experiment, when subjects attended to the action associated with the objects, a strong cross-modal congruency effect (CCE) was observed for pictures representing medium and high manipulability objects, reflected in faster reaction times if the vibrotactile stimulus and the visual distractor were in the same location, whereas no CCE was observed for low manipulability objects. This finding was replicated in a second experiment in which subjects attended to the visual properties of the objects. These findings suggest that the observation of manipulable objects facilitates cross-modal integration in peripersonal space

    PCNA levels in neuroblastoma are increased in tumors with an amplified N- myc gene and in metastatic stage tumors

    Full text link
    N- myc oncogene amplification in neuroblastoma has been found to be significantly associated with advanced stage disease and tumor progression. However, there is a lack of data on tumors, regarding the relationship between N- myc gene amplification and proliferation activity. Proliferating cell nuclear antigen (PCNA) is a proliferation-induced 36 kD nuclear protein that is the auxiliary component of DNA polymerase δ. PCNA levels in tissues have been found to correlate with proliferative activity. We have examined PCNA levels in neuroblastomas in relation to N- myc gene amplification and tumor stage. Statistically, significantly higher levels of PCNA were observed in tumors with an amplified N- myc gene relative to tumors with a single gene copy. The highest levels of PCNA were observed in advanced stage tumors with an amplified N- myc gene. Treatment of neuroblastoma cells in culture with retinoic acid, which induces differentiation, resulted in a substantial decrease in PCNA. Our results suggest that PCNA levels may reflect differences in proliferative activity between neuroblastomas, related to stage of the disease and to N- myc gene copy number.[/p ]Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42581/1/10585_2004_Article_BF00880069.pd

    An Ecological Alternative to Snodgrass & Vanderwart: 360 High Quality Colour Images with Norms for Seven Psycholinguistic Variables

    Get PDF
    This work presents a new set of 360 high quality colour images belonging to 23 semantic subcategories. Two hundred and thirty-six Spanish speakers named the items and also provided data from seven relevant psycholinguistic variables: age of acquisition, familiarity, manipulability, name agreement, typicality and visual complexity. Furthermore, we also present lexical frequency data derived from Internet search hits. Apart from the high number of variables evaluated, knowing that it affects the processing of stimuli, this new set presents important advantages over other similar image corpi: (a) this corpus presents a broad number of subcategories and images; for example, this will permit researchers to select stimuli of appropriate difficulty as required, (e.g., to deal with problems derived from ceiling effects); (b) the fact of using coloured stimuli provides a more realistic, ecologically-valid, representation of real life objects. In sum, this set of stimuli provides a useful tool for research on visual object-and word- processing, both in neurological patients and in healthy controls
    corecore