85 research outputs found
Spontaneous expectoration of pulmonary metastases in a child with osteogenic sarcoma
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148355/1/pbc27611.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148355/2/pbc27611_am.pd
A biophysical model of cell adhesion mediated by immunoadhesin drugs and antibodies
A promising direction in drug development is to exploit the ability of
natural killer cells to kill antibody-labeled target cells. Monoclonal
antibodies and drugs designed to elicit this effect typically bind cell-surface
epitopes that are overexpressed on target cells but also present on other
cells. Thus it is important to understand adhesion of cells by antibodies and
similar molecules. We present an equilibrium model of such adhesion,
incorporating heterogeneity in target cell epitope density and epitope
immobility. We compare with experiments on the adhesion of Jurkat T cells to
bilayers containing the relevant natural killer cell receptor, with adhesion
mediated by the drug alefacept. We show that a model in which all target cell
epitopes are mobile and available is inconsistent with the data, suggesting
that more complex mechanisms are at work. We hypothesize that the immobile
epitope fraction may change with cell adhesion, and we find that such a model
is more consistent with the data. We also quantitatively describe the parameter
space in which binding occurs. Our results point toward mechanisms relating
epitope immobility to cell adhesion and offer insight into the activity of an
important class of drugs.Comment: 13 pages, 5 figure
Immunotoxins and Anticancer Drug Conjugate Assemblies: The Role of the Linkage between Components
Immunotoxins and antibody-drug conjugates are protein-based drugs combining a target-specific binding domain with a cytotoxic domain. Such compounds are potentially therapeutic against diseases including cancer, and several clinical trials have shown encouraging results. Although the targeted elimination of malignant cells is an elegant concept, there are numerous practical challenges that limit conjugates’ therapeutic use, including inefficient cellular uptake, low cytotoxicity, and off-target effects. During the preparation of immunoconjugates by chemical synthesis, the choice of the hinge component joining the two building blocks is of paramount importance: the conjugate must remain stable in vivo but must afford efficient release of the toxic moiety when the target is reached. Vast efforts have been made, and the present article reviews strategies employed in developing immunoconjugates, focusing on the evolution of chemical linkers
Selective killing of Burkitt's lymphoma cells by mBAFF-targeted delivery of PinX1
Increased expression of BAFF (B cell-activating factor belonging to the TNF family) and its receptors has been identified in numerous B-cell malignancies. A soluble human BAFF mutant (mBAFF), binding to BAFF receptors but failing to activate B-lymphocyte proliferation, may function as a competitive inhibitor of BAFF and may serve as a novel ligand for targeted therapy of BAFF receptor-positive malignancies. Pin2/TRF1-interacting protein X1 (PinX1), a nucleolar protein, potently inhibits telomerase activity and affects tumorigenicity. In this study, we generated novel recombinant proteins containing mBAFF, a polyarginine tract 9R and PinX1 (or its C/N terminal), to target lymphoma cells. The fusion proteins PinX1/C–G4S–9R–G4S–mBAFF and PinX1/C–9R–mBAFF specifically bind and internalize into BAFF receptor-positive cells, and subsequently induce growth inhibition and apoptosis. The selective cytotoxicity of the fusion proteins is a BAFF receptor-mediated process and depends on mBAFF, PinX1/C and 9R. Moreover, the fusion proteins specifically kill BAFF receptor-expressing Burkitt's lymphoma (BL) cells by inhibiting telomerase activity and the consequent shortening of telomeres. Therapeutic experiments using PinX1C–G4S–9R–G4S–mBAFF in severe combined immunodeficient (SCID) mice implanted with Raji cells showed significantly prolonged survival times, indicating the in vivo antitumor activity of the fusion protein. These results suggest the potential of PinX1/C–G4S–9R–G4S–mBAFF in targeted therapy of BL
Anti-Cripto Mab inhibit tumour growth and overcome MDR in a human leukaemia MDR cell line by inhibition of Akt and activation of JNK/SAPK and bad death pathways
Doxorubicin (DOX) selection of CCRF-CEM leukaemia cell line resulted in multidrug resistance (MDR) CEM/A7R cell line, which overexpresses MDR, 1 coded P-glycoprotein (Pgp). Here, we report for the first time that oncoprotein Cripto, a founding member of epidermal growth factor-Cripto-FRL, 1-Criptic family is overexpressed in the CEM/A7R cells, and anti-Cripto monoclonal antibodies (Mab) inhibited CEM/A7R cell growth both in vitro and in an established xenograft tumour in severe combined immunodeficiency mice. Cripto Mab synergistically enhanced sensitivity of the MDR cells to Pgp substrates epirubicin (EPI), daunorubicin (DAU) and non-Pgp substrates nucleoside analogue cytosine arabinoside (AraC). In particular, the combination of anti-Cripto Mab at less than 50% of inhibition concentrations with noncytotoxic concentrations of EPI or DAU inhibited more than 90% of CEM/A7R cell growth. Cripto Mab slightly inhibited Pgp expression, and had little effect on Pgp function, indicating that a mechanism independent of Pgp was involved in overcoming MDR. We demonstrated that anti-Cripto Mab-induced CEM/A7R cell apoptosis, which was associated with an enhanced activity of the c-Jun N-terminal kinase/stress-activated protein kinase and inhibition of Akt phosphorylation, resulting in an activation of mitochondrial apoptosis pathway as evidenced by dephosphorylation of Bad at Ser136, Bcl-2 at Ser70 and a cleaved caspase-9
Single domain antibodies: promising experimental and therapeutic tools in infection and immunity
Antibodies are important tools for experimental research and medical applications. Most antibodies are composed of two heavy and two light chains. Both chains contribute to the antigen-binding site which is usually flat or concave. In addition to these conventional antibodies, llamas, other camelids, and sharks also produce antibodies composed only of heavy chains. The antigen-binding site of these unusual heavy chain antibodies (hcAbs) is formed only by a single domain, designated VHH in camelid hcAbs and VNAR in shark hcAbs. VHH and VNAR are easily produced as recombinant proteins, designated single domain antibodies (sdAbs) or nanobodies. The CDR3 region of these sdAbs possesses the extraordinary capacity to form long fingerlike extensions that can extend into cavities on antigens, e.g., the active site crevice of enzymes. Other advantageous features of nanobodies include their small size, high solubility, thermal stability, refolding capacity, and good tissue penetration in vivo. Here we review the results of several recent proof-of-principle studies that open the exciting perspective of using sdAbs for modulating immune functions and for targeting toxins and microbes
- …