427 research outputs found
Recovering missing slices of the discrete fourier transform using ghosts
The discrete Fourier transform (DFT) underpins the solution to many inverse problems commonly possessing missing or unmeasured frequency information. This incomplete coverage of the Fourier space always produces systematic artifacts called Ghosts. In this paper, a fast and exact method for deconvolving cyclic artifacts caused by missing slices of the DFT using redundant image regions is presented. The slices discussed here originate from the exact partitioning of the Discrete Fourier Transform (DFT) space, under the projective Discrete Radon Transform, called the discrete Fourier slice theorem. The method has a computational complexity of O(n\log-{2}n) (for an n=N\times N image) and is constructed from a new cyclic theory of Ghosts. This theory is also shown to unify several aspects of work done on Ghosts over the past three decades. This paper concludes with an application to fast, exact, non-iterative image reconstruction from a highly asymmetric set of rational angle projections that give rise to sets of sparse slices within the DFT
Transition Voltage Spectroscopy and the Nature of Vacuum Tunneling
Transition Voltage Spectroscopy (TVS) has been proposed as a tool to analyze
charge transport through molecular junctions. We extend TVS to Au-vacuum-Au
junctions and study the distance dependence of the transition voltage V_t(d)
for clean electrodes in cryogenic vacuum. On the one hand, this allows us to
provide an important reference for V_t(d)-measurements on molecular junctions.
On the other hand, we show that TVS forms a simple and powerful test for vacuum
tunneling models
A Molecular Platinum Cluster Junction: A Single-Molecule Switch
We present a theoretical study of the electronic transport through
single-molecule junctions incorporating a Pt6 metal cluster bound within an
organic framework. We show that the insertion of this molecule between a pair
of electrodes leads to a fully atomically engineered nano-metallic device with
high conductance at the Fermi level and two sequential high on/off switching
states. The origin of this property can be traced back to the existence of a
HOMO which consists of two degenerate and asymmetric orbitals, lying close in
energy to the Fermi level of the metallic leads. Their degeneracy is broken
when the molecule is contacted to the leads, giving rise to two resonances
which become pinned close to the Fermi level and display destructive
interference.Comment: 4 pages, 4 figures. Reprinted (adapted) with permission from J. Am.
Chem. Soc., 2013, 135 (6), 2052. Copyright 2013 American Chemical Societ
The STAR Silicon Strip Detector (SSD)
The STAR Silicon Strip Detector (SSD) completes the three layers of the
Silicon Vertex Tracker (SVT) to make an inner tracking system located inside
the Time Projection Chamber (TPC). This additional fourth layer provides two
dimensional hit position and energy loss measurements for charged particles,
improving the extrapolation of TPC tracks through SVT hits. To match the high
multiplicity of central Au+Au collisions at RHIC the double sided silicon strip
technology was chosen which makes the SSD a half million channels detector.
Dedicated electronics have been designed for both readout and control. Also a
novel technique of bonding, the Tape Automated Bonding (TAB), was used to
fullfill the large number of bounds to be done. All aspects of the SSD are
shortly described here and test performances of produced detection modules as
well as simulated results on hit reconstruction are given.Comment: 11 pages, 8 figures, 1 tabl
A New Solution to the Relative Orientation Problem using only 3 Points and the Vertical Direction
This paper presents a new method to recover the relative pose between two
images, using three points and the vertical direction information. The vertical
direction can be determined in two ways: 1- using direct physical measurement
like IMU (inertial measurement unit), 2- using vertical vanishing point. This
knowledge of the vertical direction solves 2 unknowns among the 3 parameters of
the relative rotation, so that only 3 homologous points are requested to
position a couple of images. Rewriting the coplanarity equations leads to a
simpler solution. The remaining unknowns resolution is performed by an
algebraic method using Grobner bases. The elements necessary to build a
specific algebraic solver are given in this paper, allowing for a real-time
implementation. The results on real and synthetic data show the efficiency of
this method
MCMC implementation for Bayesian hidden semi-Markov models with illustrative applications
Copyright © Springer 2013. The final publication is available at Springer via http://dx.doi.org/10.1007/s11222-013-9399-zHidden Markov models (HMMs) are flexible, well established models useful in a diverse range of applications.
However, one potential limitation of such models lies in their inability to explicitly structure the holding times of each hidden state. Hidden semi-Markov models (HSMMs) are more useful in the latter respect as they incorporate additional temporal structure by explicit modelling of the holding times. However, HSMMs have generally received less attention in the literature, mainly due to their intensive computational requirements. Here a Bayesian implementation of HSMMs is presented. Recursive algorithms are proposed in conjunction with Metropolis-Hastings in such a way as to avoid sampling from the distribution of the hidden state sequence in the MCMC sampler. This provides a computationally tractable estimation framework for HSMMs avoiding the limitations associated with the conventional EM algorithm regarding model flexibility. Performance of the proposed implementation is demonstrated through simulation experiments as well as an illustrative application relating to recurrent failures in a network of underground water pipes where random effects are also included into the HSMM to allow for pipe heterogeneity
Electronic localization at mesoscopic length scales: different definitions of localization and contact effects in a heuristic DNA model
In this work we investigate the electronic transport along model DNA
molecules using an effective tight-binding approach that includes the backbone
on site energies. The localization length and participation number are examined
as a function of system size, energy dependence, and the contact coupling
between the leads and the DNA molecule. On one hand, the transition from an
diffusive regime to a localized regime for short systems is identified,
suggesting the necessity of a further length scale revealing the system borders
sensibility. On the other hand, we show that the lenght localization and
participation number, do not depended of system size and contact coupling in
the thermodynamic limit. Finally we discuss possible length dependent origins
for the large discrepancies among experimental results for the electronic
transport in DNA sample
Production test of microstrip detector and electronic frontend modules for the STAR and ALICE trackers
We revisit Shin et al.’s leakage-resilient password-based authenticated key establishment protocol (LR-AKEP) and the security model used to prove the security of LR-AKEP. By refining the Leak oracle in the security model, we show that LR-AKE (1) can, in fact, achieve a stronger notion of leakage-resilience than initially claimed and (2) also achieve an additional feature of traceability, not previously mentioned
Disappearance of back-to-back high hadron correlations in central Au+Au collisions at = 200 GeV
Azimuthal correlations for large transverse momentum charged hadrons have
been measured over a wide pseudo-rapidity range and full azimuth in Au+Au and
p+p collisions at = 200 GeV. The small-angle correlations
observed in p+p collisions and at all centralities of Au+Au collisions are
characteristic of hard-scattering processes already observed in elementary
collisions. A strong back-to-back correlation exists for p+p and peripheral Au
+ Au. In contrast, the back-to-back correlations are reduced considerably in
the most central Au+Au collisions, indicating substantial interaction as the
hard-scattered partons or their fragmentation products traverse the medium.Comment: submitted to Phys. Rev. Let
Azimuthal anisotropy and correlations in the hard scattering regime at RHIC
Azimuthal anisotropy () and two-particle angular correlations of high
charged hadrons have been measured in Au+Au collisions at
=130 GeV for transverse momenta up to 6 GeV/c, where hard
processes are expected to contribute significantly. The two-particle angular
correlations exhibit elliptic flow and a structure suggestive of fragmentation
of high partons. The monotonic rise of for GeV/c is
consistent with collective hydrodynamical flow calculations. At \pT>3 GeV/c a
saturation of is observed which persists up to GeV/c.Comment: As publishe
- …