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Abstract Hidden Markov models (HMMs) are flexible, well- despite the usefulness of HMMs, the state holding times are
established models useful in a diverse range of applicationimplicitly geometrically distributed, and this may corste
However, one potential limitation of such models lies inithe a potential limitation (see Guedon (2003) and Tokdar et al.
inability to explicitly structure the holding times of each (2010) for some examples).

hidden state. Hidden semi-Markov models (HSMMs) are A natural extension of the HMM is the hidden semi-

more useful in the latter respec'F as they ipcorporate aOIdi\'/larkov model (HSMM) where holding time distributions
juona_l temporal structure by e>;]pI|C|t modelhlrg of the zolld are defined explicitly while retaining the Markovian depen-
N9 t”T‘es: Hﬁwlgver, HSMMS.’ Ia\ée genirg y receve es’%ency structure. However, even though the transition be-
attention in the literature, mainly due to their intensieee -~ Li\viMs and HSMMSs is mathematically straightfor-

putationa}I requirements. Here.a Bayes.ian implementafion RNard, the complexity of the model increases considerably.
HSMMs is presented. Recursive algorithms are proposed Iaonceptually, one needs to consider all possible state se-

conjunction with Metropolis-Hastings in such a way as toquences at the same time as all possible holding times for

avoid sa_mplmg from the dlstrlbutlpn of the hidden state S€%each state. This renders HSMMs computationally intensive
quence in the MCMC sampler. This provides a computation

. “"~"and as a result, the literature on HSMM applications is con-
ally t_ra_ctaple estlmat_lon framework for HSMMS avoiding siderably smaller than that relating to HMMs,
the limitations associated with the conventional EM algo-
rithm regarding model flexibility. Performance of the pro-  In this paper, a Bayesian formulation of HSMMs is con-
posed implementation is demonstrated through simulatiofidered, along with associated methods for MCMC sam-
experiments as well as an illustrative application retatm  Pling. The proposed approach provides a computationally
recurrent failures in a network of underground water pipegfficient estimation framework for HSMMs at the same time

where random effects are also included into the HSMM tg@S allowing for further flexibility, for instance the incios
allow for pipe heterogeneity. of random effects. In this section, background on HSMMs

) is provided while in Section 2 the model formulation is pre-
Keywords HSMM - random effects MCMC - recursive  gented. In Section 3 a recursive method for likelihood calcu
algorithms- Bayesian modelwater pipes. lation is presented as well as details on MCMC model esti-
mation. Simulation results and an application to modelling
recurrent failures in underground water pipes are predente
in Section 4. Finally in Section 5, a summary is provided
g'c}Iong with conclusions.

1 Introduction and Background

First introduced in speech recognition (see Rabiner (198
for a review paper), hidden Markov models (HMMs) have A few examples of applications that have found use for
found increasing use in various applications areas. HoweveHMMSs include: climate modelling where HMMs are used
T Economou, T. C. Bailey and Z. Kapelan for downscgling precipitation forecasts (Bellone et aOQQ), .
College of En’gir-1ee-ring Mathemétics and Physical Sciences !n econom!cs HMMs ar? used t? capture non'st[atlona!‘lty
Uninevristy of Exeter in share price return series (Rydén et al., 1998), in médica
Tel.: +44-1392725280 applications to model disease progression in cancer studie
E-mail: t.economou@ex.ac.uk (Kozumi, 2000; Jouyaux et al., 2000), in genetics (Yau et al.
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2011), in mechanical engineering (Jardine et al., 2006) and In the following sections in this paper, we instead advo-

several others. cate the use of recursive algorithms along with Metropolis-
HSMMs were first introduced by Ferguson (1980) with Hastings for estimation of HSMMs. This avoids sampling

an application in speech recognition (see Guedon (1992) fdrom the conditional distribution of the hidden state setee

athorough review of HMMs and HSMMs in speech processby using the joint distribution of the hidden states and the

ing applications). Since then, the popularity of HSMMs hasdata in the likelihood. This approach provides a computa-

increased in many disciples such as: computer science (elgenally efficient estimation framework whilst also allavg

Levinson (1986)); engineering (e.g. Dong and He (2007))for considerable flexibility in model formulation includjn

climate (e.g. Sansom and Thomson (2001)); finance (e.dor example, use of random effects. Note however, that there

Bulla and Bulla (2006)); computational biology (e.g. Schmi has been recent work by Dewar et al. (2012) and Johnson

dler et al. (2000)) and many more (see Yu (2010) for a mor@nd Willsky (2012) on Bayesian HSMMs using computa-

detailed list). tionally efficient Gibbs samplers. We refer to these papers
The traditional tool for fitting HMMs and HSMMs is later, in sections 3 and 5.

the EM algorithm where recursive (forward-backward) al-

gorithms are used for calculating the otherwise computa-

tionally intensive likelihood of these models. These algo-2 Model formulation

rithms, discussed in more detail in Section 3, make use of the

short term memory and discrete nature of the latent chains tbhis section focuses on formulating the likelihood of a gen-

efficiently evaluate the likelihood. Guedon (2003) uses¢he eral HSMM in time. The latent semi-Markov chain is dis-

recursive algorithms along with the EM algorithm for esti- crete (in time) and the conditional model is defined through

mating HSMMs and more recently, Bulla et al. (2010) havea random variabl¥ (t) given the state of the chaintat

written an R package (R Development Core Team, 2012)

which implements HSMMs using the approach in Guedon

(2003). The limitation in using these techniques for estima 2.1 Hidden Markov and Hidden semi-Markov Models

ing HMMs and HSMMs lies in model flexibility whereas a

Bayesian approach to model fitting enables the full poténtian a Hidden Markov model (HMM), the conditional model

of these latent structure models. assumed for the observed data depends on an underlying
HMMs and HSMMs fit naturally into the Bayesian con- Markov chain with discrete state spase {1,...,M}, de-

text since these are essentially hierarchical models whefféned by an initial distributiorrt = (71(1),...,m(M)) and a

the data are assumed to follow a suitably chosen probabiligransition matrixP = { p; j } wherep; j = Pr(Sy, = j|Sg, , =

tic process (the conditional model) given the latent Markovi) and 'y ; pi j = 1. Note thatTy,k = 0,1,2,... are the dis-

chain. In particular, HMMs may be viewed as random ef-crete time steps of the chain afg is the state of the chain

fect models where the unobserved random quantities are it Tx. For a discrete Markov chain, the length of timéhat

stances of the hidden chain. This fact was used in Chib (1998)statei remains in, is implicitly geometrically distributed:

who considered a Gibbs sampler for estimating HMMs byhi (1) = (pi)*"(1— pii) whereh;(1) is the holding time dis-

deriving and directly sampling from the conditional distri tribution.

bution of the hidden state sequence, instead of updating the The hidden semi-Markov model (HSMM) allows explicit

joint distribution of the chain state and the data at eaclke timspecification of the holding time distributions. A discrete

step. Other work involving Bayesian HMMs includes Scottsemi-Markov chain can be defined by an initial distribu-

(2002), Guha et al. (2008) and Yau et al. (2011). Becaustion 1, a transition matrix® = {p; ;} wherep;; = 0 and

of the associated computational difficulties involved withy ; pj j = 1, and a set of holding time distributions for each

MCMC, few authors have considered a Bayesian approacstate{hi(t; @), h2(7; @),...,.hm(T; @)} with associated pa-

to HSMMs. rametersp = (@, ..., @v). Self transitions are not allowed
The method in Chib (1996) relies on the Markov struc-(pj,j=0) as this conflicts with the definition of holding times

ture of the model and is thus not applicable for HSMMsbetween state changes.

where the waiting times are not geometric. This point was Suppose now that a semi-Markov chain has been ob-

addressed in Tokdar et al. (2010) where Chib’s method waserved in the intervdlly, Teng) @and thatQ — 1 state changes

adapted and a Gibbs sampler was used to fit a two-stateave occurred with holding time intervalss, 1, ..., 7q).

HSMM. However this approach requires derivation of theThe likelihood, assuming right censoringTafg is:

full conditionals for each unknown quantity given the data

and all other unknown quantities including the hidden state Lmc(Sy:-- -8 T, T TP, @) =

. . e Q-1
sequence and in practice, this limits the degree of complex- . .
ity that can be considered in the model formulation. (S le (T ) Pssicn X PHT > To; 4)- (1)
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where P(T > 1g; ¢iy) is the survival function ofis, (1q; ). The observed data are just the observed values at each occur-
In the non-censored case, i.e. a state change took placerancey(tj) and the bounds of the observation perfiag Tend -

Teng, thenQ state changes have occurred and the likelihood  The model presented here is one which allows jumps to
is given by7i(S1) [T hs, (T &) Ps.s;.1- Itis assumed that  and from a number of parallel ongoing proceséds, with
once the chain enters a state, it will stay there for at leashe jumps being controlled by the hidden chain. The Marko-
one time step. This implies that any distribution chosen tq;jan structure implicitly introduces correlation betwesin
characterisé() must be zero-truncated. servations. Note that a specific model for ) has not

For a more general semi-Markov chain, one could allowheen specified other than making the assumption of indepen-
for M(M — 1) holding time distributionsy (7; ;) where  dence. Note also that an upper limit has not been imposed on
i # J. Then the holding time distributions depend on thethe holding time distributions so it is theoretically pdssi

previous state. This generalisation is straightforwauditae  for a particular state to occupy the whole observation erio
formulations presented subsequently can easily be adjuste

to satisfy this.

2.2 Semi-Markov modulated models 3 Bayesian model implementation

Consider a general random variabét), wheret is time, 3 1 Discretisation
observed in some arbitrary time peri¢th, Teng at times
To <ty,t2,...,th < Tengto Obtain observationgts), . .., y(tn).

> ; The evaluation of the likelihood in Eqn (4) is computation-
Let f(Y(t)|6g,S) be the probability model fov (t) with

ally prohibitive for any reasonable length of observatien p
parameterss, Wherg fqr the moment we assume tais riod [To, Tend @and number of latent states. We show in this
notrandom. Assuming independence between ¥éghithe section how recursive algorithms analogous to those used in

joint likelihood of the observations i§ji_; f(y(ti)wsti %) HMMs (Baum et al., 1970) may be used to overcome that
For notational convenience, suppose that for time interyal

for all thart problem.
= {y(tj)} foralltj € 7, so tha The recursive algorithms in HMMs depend on the latent
hain being discrete in time, where in each time step the join
L(y(1)|65.S) = [ f(v(t)|6s .S 2) ¢ 9 ' phe)
¥(D)l6s,S) Jlj_lr (y( )18s;.% ) @ distribution of chain and data is calculated. To use these al

gorithms in HSMMs, we need to conceptually ‘discretise’
is the likelihood contribution of the data in time interal time in steps, rather than work with holding time intervals.
Now suppose that a semi-Markov chainis the under-  The holding time distributions of HSMMs considered here
lying process driving the conditional modg&(Y (t)[65,S).  are discrete, so it is easy to do so for the latent process: How
Given that the chain was observed, the likelihood of thissyer, it is important that the conditional modél (t)|6s,S)
semi-Markov modulated process is formulated by combinfer the observations has conditionally orthogonalincretse
ing the (now) conditional likelihood of the observations in gjyen the stat&. This is possible where the random variable
Eqn (2) and the likelihood of the chain in Eqn (1): Y(t) is either independent of time or it is a stochastic tem-
Q-1 poral process with independent increments (i.e. fortary
Lsmm(D;©) = 1(Sy) [] Ms(Tis @ILY(T) 165, SIPscSr o< <tn, Y(t2) = Y(t2), Y (ta) = Y(t2),---, Y (tn) = Y (tn_1)
k=1 are independent).

x PT > To; %)L(y(TQ)wSQ’SQ) (3) Suppose the observation period is divided in equal time
whereD = (To,y(t1),...,Y(tn), Tend; St, - .-, S0, T1, - - -, TQ) stepsTo, T4, .., Teng- The ‘discretised’ version of a HSMM
ando = (6s, P, ¢). Note that we formulate the likelihood is a process which starts & with probability 71(Sr,), then
for the (more realistic) case of right-censored data ant th&ry, is held for at least one time step and the observed data at
the modification to the likelihood is trivial (see sectiodP. T; are the events that occurred(ify, T1]. The process will
for the case where a state change occurrédat either keep holdingyr, until T, or enter another state with

Because the likelihood in Eqn (3) depends on having obsome probability taken from the appropriate entryPpind
served the chain, to formulate the HSMM likelihood, Eqnhold that for at least one time step. The rest follows accord-
(3) needsto be summed over all possible st8te¢l,...,M) ingly. Note that the discrete time steps of the chigiy, . ..
and all possible time intervaise (1,2,. .., Teng): are deliberately different from the time stapgy, ... of the

. observations for the sake of generality. The two may often be

LHSMM(TO’J(tl)’ ' 'N'I’y(tn)’Te”d'O) - the same, however there may be cases where the time steps
. z Lsmm(D; ©). (4) of the chain are larger, e.g. hidden chain captures monthly
O+ To=TengSI=1  So=1 effects on data recorded daily.
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3.2 Recursive algorithms - Forward Scott (2002) gives a matrix representation of the forward
(and backward) algorithm in HMMs which aids in better un-
A forward variablevr (j) is considered sequentially at each derstanding these algorithms. A forward matfix is de-
discrete time stefp = Ty, To, ..., Teng (Rabiner, 1989) where fined at each step whose(i, j)th element is the probability
of occupying statg at T given that: staté was occupied at
v7(j) = Pr(data up tol and chain exitSr = j), T — 1 and the data up t6. Summing the rows of these ma-

) o - ~ trices provides the necessary terms for recursion. Badh
i.e. the joint probability of the data up ©® and the chain = g¢a1eq so that all elements sum to 1 where the scaling fac-
transitioning out of statg at time stepl’, meaning that the : T .

chain occupies stateat T but jumps to staté# j atT + 1. tor is the joint Ilkellhoqd (Egn 4) up to tim&. However, to

As with HMMs, vt () can be computed recursively: keep track of the likelihood untileng, at each new stef

the scaling factor af — 1 needs to be multiplied back Ay

v (i) = "(J:):"(i_;(pj)L(y(ro‘l)‘ej’sz ) before scaling it. This is what we mean by “re-scale before
v () = ()i 9L (y(T0x)165, 5= ) ®)  scaling”. The re-scaling occurs after summations to avoid
k-1 M
+y ZVTm(i)pi,jhj(k—m;%)L(y(Tm,k)\Gj,S: i), underflow. Here, we formulate the HSMM forward recur-
—1i=

sion similarly performing as many summations as possible

wherert; j = [T;, Tj]. Summing the last variabig, ,(j) over before re-sc_allng. _ _ _

all states gives the likelihood in Eqn (4). Note that the com- To_descnbe_ the forward recursion, we first define several
plexity of the forward algorithm for HSMMs i®(Te2nd) which guantities. Define forward matricég = {ar,j} where

is significantly more than th®(Tenq) complexity for HMMs. arij = Pr(Sr_1 =i and chain exit$y = j|data up toT)

In practice, it may be sensible to restrict the support of the

holding time distributions (Yu, 2010) especially if themea is the probability of exiting statgat T given being in state
physical arguments as to how long a state can be occupieat T — 1, conditional on the data up . Summing the rows
The holding time distributions are then truncated which inof this matrix gives vectors

turn reduces the complexity of the forward algorithm but
restricts flexibility. Dewar et al. (2012) propose a Bayasia

implementation of HSMMs where they introduce a methodyste thatvr (j) andar () are related - the latter is a scaled
which dynamically truncates the holding time distribugon e rsjon of the former, so that its elements add to 1. Clearly,
toincrease efficiency. The method theoretically allowsiest 1, off-diagonal terms ok are ‘easier’ to work with since

to occupy the whole observation period but in practice it iShey indicate a state change and their calculation is simila
more efficient, using carefully chosen auxiliary varialites i pmMs with the exception of having to include the hold-
restrict the outermost summation in Eqgn (5). ing time probability of 1 time step (froff — 1 to T). The

Forward variables present an elegant way of evaluatingjagonal entries however, are more complicated since they
the joint distribution of the data and the hidden chain. HoW-gflect exiting statg at T given statej atT — 1.

ever, multiplications of probabilities are involved anése Define quantity ; T whered ; + = 0 and:
rapidly get smaller, leading to potential computer underflo ' ;
An efficient way to prevent underflow (see Devijver (1985) &.j.1 = Pr(Sr_1 =i and chain exit$r = j|data up tor ),
and references therein) is by scaling the forward probabil- ) L th _
ities at each time step. The idea is to work with the conWhich are the off-diagondl, j)™ entries ofAr. & j v may
ditional distribution of the states (which sums to 1) instea P€ calculated recursively usirg (j) as in HMMs.
of the joint distribution of the states and the data. However Further, d_efine quantities; andy; which make up the
care is needed if the intention is to evaluate the likelihoodliagonal entries ofr:
and one needs to keep track of the scaling factors until thg, (j) = pr(S;_; = j and chain exit$r = j and at least one
last time step.

In HMMs, one may scale at each time step and simply
“re-scale” at the last time step to obtain the likelihood. InVr(J) =P
HSMM s this is not possible since at each new time step, an change occurred befofle— 1|data up taT).

extraterm is introduced which does not dependpm(j). . (j) relates to holding statgfrom the start (i.e. fronTo)

This term, given in Eqn (5), is the probability that a state ha ;4 cannot be calculated sequentially I ).

been held from the start of the.observation period. Because giyenthe time-independence (or independentincrements)
these extra terms do not contain any scaled components, r8ssumption of the conditional mode(Y (t)|6s,S), we can

scaling simply at the last time step to obtain the likelihed ;- aq5e computational efficiency by pre-calculatingeest
invalid. It is therefore necessary to “re-scale beforeisgal

at each step in order to calculate the HSMM likelihood. Fi(k) =L(y(t-1k)|6j,S=j) fork=12 ..., Teng,

m

a7 (J) = Pr(chain exitsSyr = j|dataup to 7.

state change has occurred before 1|data up tdT ),
r(Sr_1 = j and chain exit$r = j and no state
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relating to the conditional likelihood contributions atcea Underflow can still present problems so working on the
time step. In addition, we pre-calculate vectors whose ellog scale is sensible. The only problem is then how to eval-
ements correspond to ratios of probabilities from holdinguate logX +Y) from log(X) and log'Y). One possibility
time distributions: would be to letM = max(log(X),log(Y)) so that:
- <h1(2:€0j) i) hj(Tena—Toi ) )

AR @) hi2@) h (Tena— To— 1:9)
for j=1,2,...,M, which will increase efficiency when cal-
culating the diagonals okr. Note that eacli; has length
(Tenda— To — 1). At each time stefl, eachET T.(]) with
Ta=1,2,...,T — 1 can be multiplied with the appropriate
entries ofF j andH j, to accumulate information on the prob- 3.3 Recursive algorithms - Backward
ability of holding statej up toT given that at least one state

change has occurred.
Let the likelihood of the HSMM at timd be denoted

log(X +Y) = Iog( gog(X)- M+e'°9<Y)’M)+M,

which is a method immune to underflow since in the worst
case logX +Y) =M.

The backward algorithm, as presented in Scott (2002), con-
structs backward matric& = {br j} such that:

by ¢1. Then, the forward algorithm foF = Ty, ..., TengiS as
f°"°"¥51 " ) (L F () bri j = Pr(Sr_1=iand chain occupieSr = j|data up t0Teng).
1: () = v () = 1())hj(L;¢)rj(d),
én(j) = d in=0 There are two differences between the elemenig of the
) forward matrices anby; j: first, the latter depend on all ob-
Z va(h), o () = wm(i)/fn, served data instead of just data upitand second, thier; j
(ar.i} = aTl(J) andar, i j = 0. relate to the prob_ability of Fhe_chain os:c.:upying stamT
T, Vi) = v (H; (UF (2) but not necessarily transitioning out ¢fin the next time
' C{ al (i)py b (1: (p_;F_(Z) step. So in order to implement the backward algorithm, we
AT = IR RS RS need to alter the forward algorithm by effectively replagin
&, (] {; 5], Tz} x (1, (re-scale), the holding time distributionis; (7; ¢;) with the correspond-
ing survival functions Rir > t) to obtain forward matrices
Vi (1) = Yr (1) +&n(), Ar = {a}; ;} where
Z v (i), an () =vr(j)/tr, (scale) ar; j=Pr(Sr_1=iand chain occupieSr = j|data up tdT ).
{an.jit = Vrz(l) andar, j j = (1,8, 7 Once the forward matrices; have been calculated, back-
=T y(i) = v (DH(IN=D)F;(N), ward matrices are obtained by

Ay = Ony_y ()P hi (L )F(N),
& (i) = & (HHj(N=K)Fj(N) fork=2,...,N -1,

En(j |:;d]TN:| XUy 4,

/
arij

T() BT+1()

= Pr(Sr_1 = i|chain occupie$r = j,data up torT )
x Pr(chain occupieSr = j|data up tOTenq),

bTIj

TN-1

Z?Eu(j)+fTN(j)a

Vi (1) = v (D) + where as before, the variable$ j) are calculated by sum-

ming the rows ofA7 and are defined as:
ar(j) =

The variable@r1(]) are calculated by summing the columns
of Br.1 and are defined as:

M
= 3 viu(D),amy (1) = v (D),
=1

)
i 10 m) -
(a8 Bra() =

At the last time ste@ = Tgpng, the survivor function of the

holding times should be used unless the assumption of for@nd note thaBr,, = A’Tend. Simply put, this algorithm start-

ing a state change at the last time step is appropriate. Theg from Tenq modifies (or updates) the elementsA4f so

HSMM likelihood in Eqn (4) is given by, that the sum of its rows is equal to the sum of the columns
Note that the conditional moddl(Y(t)|6s,S) is arbi-  of Br.

trary, as long as eithef(t) is independent if time or it is a The backward matriceByt are by definition scaled so

process with independent increments. Combinations of difthat their elements sum to 1. Summing the rows of each

ferent models folY (t) are also possible where for example By, gives a vector corresponding to the distribution of states

each hidden state relates to a different conditional model. p(Sr) at time stepl’ given all the data, which is effectively

Pr(chain occupie$r = j|data up tadr').
{an.jjt = — <VrN(J

andar, ;i = . . .
Pr(chain occupie$r = j|data up tolegng)
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the marginal distribution of each state at each time step. Thare more local, leading to higher acceptance rate. Marin and
distribution p(Sr) can be used to summarise the distribu-Robert (1997) suggest to either choaset random from
tion p(S) of the whole state sequence. Unlike in HMMs, thea predetermined set of values for each MCMC iteration or
backward algorithm cannot be implemented during estimaperform prior small runs to determine a reasonable value.
tion as the forward algorithm needs to be modified. The Dirichlet proposal, although elegant, has only one
However, in some applications such as gene sequencinguning’ parameter ¢) controlling the variance of the pro-
it is of interest to estimate the most likely state trajegtor posal. A more flexible approach would be to use a multivari-
rather than the marginal distribution of each state seplgrat ate Gaussian proposal after a logistic transformation.eMor
Maximum a posteriori (MAP) estimation can be used, whichspecifically, letrr_1 = (7, ..., 1) and use the proposal
finds the mode of the posterior distribution for the state tra
jectory. In other Wordsr,) MAP is used to find the state trajec-q (Iog(nil/n’{) | IOg(TLl/nl)) ~N(log(r1/m),2)  (8)
tory that maximises the joint posterior of the hidden statesvhereZ is a diagonal matrix and entries in the diagonal are
(see Scott (2002) for details). variances controlling the acceptance rate for each element
Transforming back is trivializ* = 1/(1+ e *) where x is a
draw from (8). More control over the proposal can lead to
3.4 Metropolis-Hastings smaller rejection rates and improved mixing relative to (7)
In addition to the parameters of the hidden chain, the
Upon evaluation of the likelihood using the forward algo- parameters of both the conditional model and holding time
rithm, the Metropolis-Hastings (MH) algorithm can be usedgjstributions may be sampled using a Normal random walk
directly for parameter estimation. A Gibbs sampler is alsoasampler. Suitable transformations may be necessary to ac-
possible and Scott (2002) presents a feasible implementgommodate certain parameters. For instance, if arbitrary p
tion in the case of HMMs where the forward-backward al-rameterp (0,0) theng* = exp(X*) is a suitable candidate
gorithm is used to obtain samples of the hidden chain sgyherex*|X ~ N(X =log(@), g2). In the case of the Normal
quence and utilise them to perform Gibbs sampling on thjjstribution the proposal fap, using general transformation
conditional model. As mentioned earlier, sampling theestat heory, isq(¢*|@) ~ N (log(¢),02) x (¢*) ! meaning that

sequence can be avoided in each MCMC step by integratinge ratio of proposals in the acceptance probability calcul
out the state sequence and this is effectively done here kjon simplifies toq(¢|¢*)/q(¢*|@) = ¢* /.
simply evaluating the likelihood and using it to evaluate th  proposal distributions from different samplers may be
acceptance probability in MH. combined, such as the random walk and the independence
The difficulty in using MH often lies in the choice and sampler. The drawback of such a convoluted proposal is
tuning of the proposal distributiog(6*|8). For HSMMs,  |oss of control in trying to achieve a desired acceptanee rat
the dimension of the parameter space can be large with ea@bmponentwise MH can be used where a block of parame-
parameter having different support. For instance, parameers is updated at each MCMC iteration. Gelman et al. (1996)
ters inmrand rows ofP take values or0,1] and in general  concluded that for high dimensional problems, optimal ac-
are not independent. An easy choice for those parametersdgptance rates lie around 24% whereas other authors point
to use an independence sampler wegi ) = U(0,1) and  towards acceptance rates in the range of 20% to 50% (Gamer-
Q78,7 1) = U(0,1— 31 f /) fork=1,....M =1 man, 1997).
so that using Bayes’ theorem,

q(r[l7 R nl-\/lfl) — q(nl)q(n2|nl) . q(rﬁ\/l71| m,..., TE\/FZ)- 3.5 Label SWitChing

(6) As in the case of mixture models, the problem of label switch-

An alternative approach is to use an independence sard may arise when using MCMC to fit HMMs and HSMMs.
1T~ Dir(1). The independence sampler is easy to use, howance of the likelihood under relabelling of the hidden state
ever it typically leads to slow convergence since infororati  (Richardsonand Green, 1997; Celeux etal., 2000). The like-
embedded in the existing location of the chain is ignoredlinood invariance directly affects the (joint) posteriast-

posterior making it difficult to summarise, especially by us
g(rt*|m) = Dir(am,...,amy), (7)  ing marginal distributions as these are likely to be inappro

. ~ priate. Label switching can be diagnosed from time series
where E{ﬂﬂ = 11, giving a proposal centred at the previousplots of MCMC parameter samples as well as density es-
value of the chain. Large values afproduce ‘moves’ that timation plots. Signs of jumps in the former coupled with
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associated multi-modality in the latter will indicate labe The parameters of the hidden chain are the initial distribu-
switching issues. A possible prevention technique lieg+in o tion 1T and the parametergs of the holding time distribu-
dering the states in some way. This is difficult to determindions which we assume to be zero-truncated Poisson:

from the data due to the latent nature of the model. A sen-

sible way is to constrain parameters so that if label switchhS(T|T >00) = ——>
ing occurs, these constraints are violated. A typical eXamp Tl(l-e %)

would be to constrain parameters of the conditional mOdeéecause there are just two states, the2transition matrix
which relate to the mean. P={pi} is defined agi; = 0 andp; | = 1.

Although constraints may be imposed by using appro-  pata from the model in Egn (9) were simulated once
priate proposals, it is also possible to use appropriate Prigr¢ — 1 . 500 time steps, with parameter values given in
ors which have a density of zero in the areas where violarapie 1. The first 400 time steps were used for model fit-
tions occur (Scott, 2002). This will disrupt the symmetryting while the last 100 were kept for out-of-sample predic-
in the posterior by breaking the symmetry in the prior, thus;on pyrposes. Two MCMC chains were run, each for 10000
providing a solution to label switching (Stephens, 2000). | samples and thinned by 5. After thinning, 500 samples were
the context of MH, using such priors will result in rejection ,coq as burn-in for each chain resulting in 3000 samples
of any proposed candidates outside the range of the COfly 111, The model was coded in R and each chain took
straints. However, this effectively implies using prioh&t 16,14 35 minutes to run on a reasonably fast machine (Intel
are informative. Other authors have also considered IMPO%Y6850 3GHz with 4GB RAM). Four random walk samplers
ing constraints by re-.parametrising the model, see for examyere used, one for eaqhs, 02, T and ¢s. For parameter
ple Robert and Titterington (1998). = {r}, the Dirichlet proposal in Eqn (7) was used with

Using constraints such as parameter ordering helps withy — 10, For this and subsequent model implementations, the

the identifiability issue, but it is not a ‘perfect’ solution acceptance rate for each sampler was adjusted to be in the
Celeux et al. (2000) argue that the effects of parameter O%angel0.2,0.5].

dering are less benign than thought since the design and per-
formance of the MCMC sampler are directly affected. The

e Bl
% S=12. (10)

authors also stress that the true posteriofMiasiodes M =  Table 1 Priors, inputs and estimates, where= 0.5 andn = 0.005
_number of hidden states) _and that a constrained model ty_p-Param. Prior Input _ Posterior 95% Cr 1.
ically concentrates on a single mode, but may not result in Values Mean (s.e.)
the same inference if the constraints were changed. Celeu;\u N(0.1000 3 298(006)  [2.87.3.09
etal. (2000) propose a method using MCMC to sample from 1 N(0,1000 5 488(013) [4.625.13]
the true multi-modal posterior and develop ways to reorder1/62  Gamk,n) 1 1.03(0.04)  [0.96,1.12]
samples as if they all came from a single mode. Similarly, m Dir(1,1,1) 0.3 0.28 (0.24)  [0.01,0.85]
Stephens (2000) consider relabelling MCMC output based 2 Dir(1,1,1) 0.7 0.72(0.24) ~ [0.15,0.99]
inimising the posterior expected loss @ Gam(k,n) 30 29.13(1.84) [25.70,32.80]
upon minimising the p P ' Gamk,n) 5 7.66(0.99)  [5.64,9.75]

In addition to these methods of coping with label switch

ing, any natural ordering that may be implied by knowledge

of the behaviour hidden chain are useful since restrictions Table 1 shows the input values for each parameter as

the posterior are based on physical understanding. PHOr iRye|| as prior distributions, estimates (posterior measts)-

formation on the latent part of the model may be also helpfuljarq errors and credible intervals. Foand later for rows

in model design where, for instance, absorbing states may kg P), we use a flat Difl) prior distribution. Such a prior

included in the transition matrix. is flexible in the sense that the marginal priors for eagh
have Beta distributions with parameters depending on the
parameters of the Dirichlet which here we set equal to 1.

4 Model application Throughout this section, we use a Gamma distributed prior
with large mean and variance for strictly positive paramgete
4.1 Simulation experiments and a zero mean, large variance Gaussian prior for parame-

ters with infinite support.
We begin with a relatively simple model to illustrate the  The estimates in Table 2 show good agreement with the
proposed mechanisms for fitting HSMMs. The conditionalinput values. The top plot in Fig 1, shows the simulated val-
model is Gaussian where the mean depends on a hiddemes ofY(t) as well as the simulated chain sequence. The
chain with two states, backward algorithm in section 3.3 was implemented to ob-
tain the posterior distribution gb(Sr), the probability dis-
Y(t)|S~ N(us, 0?) S=12 (9) tribution of each state at each time step. The middle plot in
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Fig 1 shows the the posterior mean({Sr = 2) from the
HSMM in Eqgn (9). For completeness, the bottom plot in Fig
1 shows the posterior mean pfSr = 2) from an HMM

8
L
state 2

6
L

implemented to the same data. The clusters of high proba-

bility are more ‘sharp’ for the HMM in the observation pe- _ E M h}k AL ] H e
riod (T = 1,...,400) and this is due to the the exponentially = -1 & -, ”i” o By 2 Y &3 ‘ .
decaying tails of the Geometric distribution. The HSMM B ! ‘ ."".'-.._ T '.-‘;.?'.Mtf ’_?::-'
also recovers the high probability clusters while allowing = : . * ] _1 : :.:

state 1

08
I

abm\y-omme 2

plains the lack of ‘sharpness’. However, the predictedrchai °
sequence does depend on the observed data so to see the un: "

derlying difference between the HMM and HSMM we com- |

pare the predicted state sequence in the prediction period

Fig 1 (in the long-run, the state probabilities come from theg = ;
stationary distribution of the hidden Markov chain which is l ‘ ‘ H H ‘ [ H
constantnime). LA g
A further simulation experiment involves simulated data : ' ‘
where the conditional model is a non-homogeneous Poisson ’ T
process (NHPP); we use the acronym HSMM-NHPP for the =
LR

currences in time where the intensity function (occurrence
rate) is temporally varying. Specifically, we simulakén-
stances from the HSMM-NHPP where the intensity functions

A(t]S) depends on a hidden semi-Markov ch&ifevents "
may be thought of as failuresin=1,...,J components and N “ }
ul \l hi.. ‘ \\ Ll

\hﬂl L

30

for holding time distributions with fatter tails, which ex-
(T =401...,500). Itis difficult for the HMM to reproduce
the true state sequence as highlighted in the bottom plot o
jointmodel. The NHPP is a counting process, describing oc-
the intensity function as the failure rate). A NHPP whose H lll
intensity function varies according to a Markov process is o
sometimes known in the literature as a Markov modulated e
Poisson process (MMPP) (Scott and Smyth, 2003; Fearnsg. 1 Top: Simulated values and state sequence from the two state
head and Sherlock, 2006). The Markov modulation indi-Gaussian model. Middle: Posterior meanpiS; = 2), the HSMM
rectly introduces correlation between successive imévad ~ Probability of state 2 at each time step given the data. ButBame
times, a property that the NHPP alone does not possess; S middle but for a HMM. The dashed vertical line correspaidiie
prop P art of the prediction period.

Fig 2 for a particular realisation of this process.

With slight change of notation, we introduce the ran-
dom variableY (t5,tp), the number of events in the interval
(ta,tp] Where 0< t5 < tp, which for the NHPP is Poisson dis- 1t t t t, tot T,

tributed. The (conditional) likelihood contributidry]ta, tp|S)
is of a Poisson random variable with meﬁfh)\ (t|S). Sup-

AtS,) AtlS,) MtS,)

State = S, State =S, State = S,
pose that each componéiitas failedn; times att; 1,...,tin, ., T
and that the intensity function obeys the power Iaw suct /-A“‘\ | T —
that: 1+ —H————
T, T, T o T T

o 2 7

At;x|S) = Gstgsflexp{ﬁ’o 4B}, (11) Fig. 2 Semi-Markov modulated counting process.

where the shape parame6gr> 0 is different for each staté  although we assume a single underlying semi-Markov pro-
of the hidden chainY (ta,tp) andA (t; x|S) are related by the cess, for simulation purposes each imaginary component is
fact that BY (ta,tp)) = j{;b)\ (t;x|S). The single covariatgy ~ affected by a different realisation of this latent process.

has an associated paramegrandf3 is the intercept which We assume 3 hidden states with initial distributimn
also relates to the scale parameter of the power law. Depenttansition matriX? and zero-truncated Poisson holding times
ing on values 0Bs, the rate is either increasing/decreasingsame as Eqn (10) witB=1,2,3. J = 50 objects were simu-
non-linearly with time, or it is constant fis = 1. Note that lated from the 3 state NHPP-HSMM where the time period
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for each ranged from 80 to 150 time steps. Table 2 shows thlerm adequately. Factors affecting failures can be relaied
priors for each parameter as well as the input values used fope characteristics (e.g., pipe material, diameter, fadlst
simulate the data. Two chains were run for 6000 iterationsire history, etc.), the environment (e.g., soil charasties,
with a burn-in of 1000 and by thinning of 5 this resulted weather data, corrosivity, traffic conditions, etc.) anelsbr-
in 2000 samples from the posterior of each parameter. Eaclice itself (e.g., water pressure, level/type of maintex@gn
chain took around 5 hours to run, which we consider accepetc.). Unfortunately, measurements on such factors agbyrar
able given the computational intensity involved in caltula available in data sets making the task of modelling quite
ing the HSMM likelihood for 50 objects. challenging.

The problem is a common one: how to model complex
(temporal) processes with limited amounts of data. The un-

Table 2 Priors, inputs and estimates wheke= 0.5 andn = 0.005 . . .
101, npu ! v 4 observed processes affecting the underlying failure rate o

Param.  Prior Input  Posterior 95% Cr.l. each pipe are temporal which makes the use of an HSMM
values  mean (s.e.) an appealing adjustment to the conventional modelling of

6, Ganmk,n) 0.5 0.50 (0.002) [0.49,0.51] pipe failures. The available data we use to illustrate teigh

6, Gamk,n) 1 0.99 (0.003)  [0.99,1.01] consists of yearly number of failures (bursts) in each pipe i

65 Gamk,n) 2 1.99 (0.002) ~ [1.99,2.00] a group of 30 interconnected water pipes forming part of an

Bo N(0,1000 -1 -0.99 (0.01) [-1.01,-0.96] d d ter distributi t K in North A .

B, N(0,1000 003  0.03(0.0001) [0.029,0031 underground water distribution network in North America.

™ Dir(1,1,1) 0.1 0.06 (0.04) [0.002,0.152] For confidentiality reasons, data location and origin c&anno

o) Dir(1,1,1) 0.7 0.72 (0.07) [0.58,0.84] be disclosed but a full description can be given as to the con-

;@ g::& 1)1) 8-3 833 Eg-gg {8%2'8-%% tent of the data. The installation date of each pipe is dffer

12 ; . : : .64,0. . . .

D1a Dir(L,1) 03 0.29 (0.03) [0.22.0.36] (the earliest being 1947 and the latest bel_ng 1959) bl_Jt thgy

P21 Dir(1,1) 0.2 0.19 (0.03) [0.15,0.25] were all observed until 2003. The only available covariate i

P23 Dir(1,1) 0.8 0.81(0.026)  [0.75,0.85] pipe length in metres.

P31 Dir(1,1) ~ 065  0.68(0.030)  [0.61,0.73] Pipe failures are generally rare events over the lifetime

P32 Dir(1,1) 0.35  0.33(0.030)  [0.27,0.39] X ) . .

o Gamk.n) 15 14.38(0.27)  [13.8.14.9] of a pipe (here the total _number of failures in all 30 pipes

® Gam(k,n) 10 9.8 (0.20) [9.4,10.2] over the whole observation period was only 110) so most

s Gamk,n) 2 1.9(0.09) [1.7,2.1] data consist of a large number of ‘zeros’ and a small num-

ber of ‘ones’ at each recording time step. Following the ap-
proach in Economou et al. (2012) we therefore consider a

To cope with potential label switching, the posterior waszero-inflated model where each pipe is modelled by a mix-
zero unles®; < 6, < 63 or equivalently\ (t|S = 1) <A (t{S= tyre of a zero-generating process and a NHPP. In Economou
2) < A(t|S=3). The model was implemented using a com-et 5. (2012) the mixing probability was constant in time but
bination of 3 random walk samplers for each(6§, B0, B1),  here we extend this by allowing the mixing probability to be
¢s and(P, ). ForP andrm, the Dirichlet proposalin Eqn (7) - driven by a latent semi-Markov chain. The parameters of the
was utilised witho = 150 forPanda = 75 forr(these were  chain are assumed to be the same for each pipe because the
chosen by performing small runs prior to the full MCMC).  pipe group comes from the same network and each pipe is

Table 2 also shows the posterior mean for each fitted pajkely to be affected by the same external unobserved pro-
rameter along with standard errors and the 95% credible insesses. Note however that each pipe may experience a dif-
terval (Cr.I). The approach we have adopted as proposed {arent realisation of the chain. In addition, the failureeraf
Section 3 leads to posterior means for the parameters whigRe NHPP is assumed to depend on a pipe specific random
recover the associated input values used to simulate tae d&iffect to allow for heterogeneity in the failure mechanism
convincingly with relatively narrow 95% Cr.1. for each pipe.

Specifically, the model is a HSMM-NHPP with two hid-
den states. One state corresponds to a NHPP with a power
law intensity function whereas the other state relates to a
zero process. The model may be formulated in the follow-
ing way: given the hidden chaif the model is NHPP with
failure rate

4.2 Application to pipe failures

Predicting pipe failures or aspects of pipe condition in wa-
ter distribution systems is an essential planning tool far w
ter companies. Traditionally, occurrences of pipe fasure
are modelled using counting process models such as tbﬁ(t|s, 6) = gto-1elfothxi} jf S=2 (12)
NHPP (Kleiner and Rajani, 2001). However, the complex 6 ~ Gammda, d) i1 30 (13)
processes that give rise to the occurrence of failures are no Y T
fully understood nor always observed which is why con-andA (t|S,6) = 0 if S= 1. The shape parametéyis dif-

ventional counting process models are often unable to peferent for each pipe anx is the pipe length. Furthermore,
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Table 3 Posterior summary = 0.5 andn = 0.005

Param.  Prior Posterior 95% Crl. R
Mean (s.e.) g |
Bo N(0,1000 -3.89(0.70)  [-5.38,-2.50] 1.02 “g *
B N(0,1000  3.29 (0.94) [1.52,5.23] 1.01 5 8- ot
o Gam(k,n) 0.52(0.45) [0.002,1.63] 1.01 e -
[0 Gank,n 0.94 (0.29) [0.471,1.63] 1.01 8
m Dir(1,1) 0.61 (0.27) [0.06,0.982] 1.03 ‘ ‘ ‘ ‘ ‘
™ Dir(1,1)  0.39(0.27) [0.02,0.939] 1.03 0 1000 2000 3000 4000
a Gamk,n) 26.73(13.42) [6.23,59.92] 1.23 MCMC samples
5 Ganm(k,n) 23.01(10.87) [5.93,48.85] 1.26

Fig. 3 Deviance samples - actual (grey) and simulated data (black)

we assume truncated Poisson distributions for the holding a) o D)
times of each state as in Eqn (10) and note that the22 = o | " T
transition matrix is given by j =0 andp; j = 1. Theonly £ f S o
other unknowns in the model are the parameters of the initiaf ¥ E
distributiont= (11, ®). g o ) g 0
A component-wise random walk MH sampler similar to © B ol ©
the one used for the simulations earlier was used and@ach < T T T T 11 e A
was sampled individually. Two MCMC chains were run and 1950 1980 1960 1980 2000
after a burn-in of 1000, we collected 10000 samples from Time (years) Time (years)
each one and thinning by 5 resulted in 4000 samples in total.
Convergence was assessed using the Gelman and Rubin =] ,C) ° d)
values (Gamerman, 1997) (given in Table 3) indicating con-g . @ 27
vergence (values close to 1). This was also true foré&ach 3 & s g |
Note that label switching was not an issue here as the zero: N 2 -
process relating t8 = 1 has no parameters and indeed none§ S § 8
of the trace plots of posterior samples showed any signs df N ©
label switching (jumps or multi-modality). B s e B e e I
1960 1980 2000 1950 1980

Estimates for global model parameters are given in Table
3 along with standard errors and 95% Cr.1. The interval for Time (years) Time (years)
B1 does not include zero indicating that the positive effectrig. 4 Observed and predicted cumulative number of failures. IBane
of pipe length on the failure rate is significant. Estimatas f @), b) and c) are for individual randomly selected pipes waer) is
@ andg imply that the holding times for the state relating " th€ whole pipe group. Solid line: observed; Dashed fredicted;
Grey shaded: 95% prediction intervals.
to the zero-process are somewhat smaller on average but in

general the ‘persistence’ of each state is similar and short
term. Plots of observed and predicted cumulative number of
Fig 3 plots deviance samples for both data predicted frorfailures per year are shown in Fig 4. The bottom right plot
the fitted model and for the actual data. This is a posteriofeflects the whole group of pipes whereas the other three re-
predictive diagnostic model fit test (Gelman et al., 2004) an fer to individual pipes. The predicted line is taken as the-po
ap-value can be estimated to quantify any discrepancies béerior predictive distribution mean of the yearly cumulati
tween model and data according to a quarifity, 6) (y for ~ failure countand the backward algorithm in Section 3.3 was
data andd for parameters) which here is chosen to be theised to calculate the posterior distribution of the mogtjik
deviance (i.e. minus twice the log-likelihood). Tpevalue  state sequence. It is clear the model has performed well in
here was estimated as 0.44, iy N) s, 1(T(y™P 6;) > fitting the data both at the individual pipe level as well & th
(y, 8))) implying adequate model fit (an extrerpevalue im-  group level.
plies that the observed data are extreme in relation to data For completeness, an HMM has also been implemented
simulated from the model). Herg() is the indicator func- to the pipe data where the conditional model is the same as
tion which is equal to 1 or O if the argument is either trueEqns (12) and (13) but the underlying latent model is a two-
or false respectively. Also/™P) represents data simulated state Markov chain. We used the Deviance Information Cri-
from the posterior predictive distribution aidis the num-  terion (DIC) to compare the HMM and HSMM. The DIC
ber of MCMC samples. is an estimate of the expected mean squared predictive er-
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ror and may be used to compare models implemented witbxperience in simulations (for instance a two-state NHPP-
MCMC (Spiegelhalter et al., 2002). The measure penalisedSMM was applied to a simple NHPP, i.e. one too many
model fit for the number of parameters and a smaller DIGstates), we found that the means of holding time distribu-
indicates better fit. In this application, the DIC was 585.53ions for many states tend to zero with very small credible
for the HSMM and 711.49 for the HMM, implying that the intervals implying there are too many states in the model. In
HSMM fitted considerably better. addition, non-identifiability of state holding times aftam-
straints have been put in to account for label switching is
also a sign of having more states than necessary.

Johnson and Willsky (2012) proposed a Bayesian imple-
mentation of HSMMs which incorporates the number of la-
tent states in the estimation and uses Gibbs sampling to pro-
vide an efficient estimation mechanism. Specifically, John-

oped in order to provide a computationally feasible Bayuasia‘:)On and V|-\|/|I:|)|§>kyH(|5|(|3/|lt2) eﬁ%ns l:hSeMT/Iﬁ:ﬁrChlcal %‘“CEEI
implementation of HSMMs. The implementation was illus- rocess ( ) oa i » Ihe main idea be-

. . . . : -hind HPD-based models is to use a HDP prior over an in-
trated using simulation experiments and a real-life appli-

: . finite state space, enabling inference on both model param-
cation. The model formulation we have presented here iS . . : .
. . . ters and state complexity. The HDP is a prior over an in-
very general and extremely flexible. Unlike previous uses of . - _ o
. inite transition matrix, however each row of the matrix is
HSMMs, the model may be applied to more that one compo- . . .
] . ... linked hierarchically through a hyper-prior so that thentra
nent as demonstrated in the water pipe network application. . L
ition distributions tend to have mass concentrated around

(see section 4) where each pipe depends on a different real

sation of the same hidden process. A feasible generaﬁsatioa typical set of states; in other words such a prior provides

of that would be to allow each component to be driven by a tendency to re-use and re-occupy a particular set of states
different latent chain. a(from the infinite set). Johnson and Willsky (2012) manage

Nevertheless, we did make the assumption in formulal to maintain the conjugacy of the HDP-HMM for the HDP-

ing the likelihood that eitheY (t) are independent in time or HSMl\I\jII:nc_IﬂL:sbe Z Glbk.)sf sampler \f[YhICh Is potentially faster
thatY(t) is a stochastic temporal process with independentpan with DELer mixing propertes.

increments. Despite these assumptions, the formulatien he hi Lastly, t.heMpr;maryq.toE'I f(?[r MCM(; lmplementtattljoE in it
allows for a wide range for models, for instance Economod IS paper IS Metropolis-nastings and as presented here, i

et al. (2009) have applied a Poisson GLM with time de-may involve many likelihood evaluations per MCMC itera-

pendent covariates where the intercept is dependent ont'gn (comppnept—mse MH). A refgree pomted.out that c_iata
augmentation is another MCMC implementation technique

latent semi-Markov chain. In addition, any stochastic pro- hich b tationall fficient. Dat
cess in time with independent increments may be used asy\ch can be computationally more efiicient. Lata augmen-

conditional model, for example Poisson process (includin atlon_ may be_ described as the Bayesuan an_alogL_Je of the EM
NHPP), Gaussian (or Wiener) process and more general gorithm (Gilks et al., 1996) and it essentially introdsice

Levy processes or even a mixture of such processes. Furth X'ﬁé{ﬂ?”?ble; li)/lrlJlatent ddatgl\\;lvl\k;llchtﬁreIalsotsatmtpled n
more, no constraints are imposed on non-linearity or wher € - ror s an s, he fatent state se-

quence constitutes the auxiliary variables allowing fa th

covariates may be incorporated in the model, including pa:'~~. . : :
rameters of the latent chain such as the transition matrixa elihood in Eqn (3) to be used instead of Eqn (4), in sam-

the distribution of the holding times pling from the posterior. However, the likelihood in Eqn (4)

One aspect that was not discussed in the paper concer Il needs to be evaluated, albeit only once, in order to-sam

the choice of the number of hidden states. This is analogo N tl_he ?umh?:jy \t/arlables (ste(? Yay eljl(?lllk/l(zoillzr:‘or ahr?\;:ﬁn
to the choice of numbers of components in a mixture mog@Ppiication ot data augmentation in S). oug

elling and can be addressed using reversible jump McmEan lead to better mixing if proposal distributions are well
as was done in Robert et al. (2000) for HMMs. We antici-Chosen' data augmentation will in general be computation-

pate this would be quite computationally intensive for net-aIIy more efficient.

works where many hidden chains are involved. Of course

any physical justification is ideal as in the case of Hugh??\ppendixA: Pseudo code for simulation experiment with
et al. (1999) and Bellone et al. (2000) who model precipi- ) )
tation occurrences and the hidden states are linked to unoB;—aus'Slan observations
served weather states which link synoptic-scale atmogpher
patterns to local-scale precipitation.

An ‘empirical’ way of deciding the number of states 1. Set values fops, g, gs andrs for S=1,2.

simplifies to just look at the model output. From practical 2. Seti =1 and sample initial stat§ from 7= {r%}.

5 Discussion
Bayesian HSMMs have received relatively little attention

in the literature largely because of their computational in
tractability. In this paper, recursive algorithms were @ev

Simulate data from 2-state Gaussian HSMM, Eqn (9):
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3. Sample duratior; of §, from zero-truncated Poisson Appendix B: Pseudo code for simulation experiment with

with parameter.

4. Sample state transition from distribution correspogdin

to S" row of P.

5. Repeat steps 3 and 4 urffiit; > 250.

6. If ;1 > 250, truncate so thagt; 1; = 250.

7. Foreacl =1,...,250, sample from Kus, 02) accord-
ing to which statéSthe chain is at time step.

Metropolis-Hastings:

— Seti =0 and initialise parameters.’, o, @ andn’.

— Calculater!V, the log-likelihood using the forward algo-
rithm in section 3.2.

— CalculateP(), the log-posterior by

PO — ¢ t1og (p(ﬂg))) +log (p(l/am))

+ log (p(@i))) +'°g(p(réi)))

wherep(-) is the prior for each parameter (Table 1).

(14)

Dofori=1,...,M whereM is the required number of MCMC

iterations:

Us: pE = ué'fl) +¢&,€~N(0,07)
Calculate/* and hencé* using Eqn (14)
Calculate acceptance probabilityras- min(1, Q) where
Q = exp({P*—Pli-1}
SampleJ fromU (0, 1)
IfU<n, setug) = &, 00 = ¢* andP) = p*.
o* = exp{log(a~Y) 4 €}, e ~ N(0,02)
Calculate/* and hencé* using Eqgn (14)
Calculate acceptance probabilityras- min(1, Q) where
Q= exp{P* +log(o*) — [P~V + Iog(a(ifl))]}
SampleJ fromU (0,1)
If U <n,setcl) =o*, ¢0) = ¢* andP() = p*,
@s Same aw, replacinggs with o.
s Samplerr ~ Dir (arr(ifl))
Calculate/* and hencé* using Eqn (14)
Calculate acceptance probabilityras- min(1, Q) where

Q = exp{P" +log(d(m'~Y; arr))
— [P +log(d(m; ant~ )]}
whered(7, 0) is a Dirichlet density with parametér
SampleJ fromU (0,1)
If U <n,setrd = 1z, (V) = ¢* andP() = P*,

10.

NHPP observations

Simulate data from 3-state NHPP-HSMM with intensity func-
tion A (t;x|S) as in Egn (11), for 50 hypothetical objects:

1. Setvalues fobs, Bo, B1, s, s andP for S=1,2,3.

2. SampleBj ~ U (80,150), for j = 1,...,50, to decide the
observation period in discrete time steps for each object.

. Sample; ~ U (50,150) to set values for the covariate

. Setj =1,i=1and sample initial stat® from 1= {15s}.

. Sample duratiorr; of §, from zero-truncated Poisson
with parameterps .

. Sample state transition from distribution correspogdin
to S" row of P.

. Repeat steps 3 and 4 urfilt; > B;.

. If 5 i > Bj, truncate so thay; 1; = B;.

. ForeaclT =1,...,Bj, sample from Poig\ ([T — 1, T]|S))

according to which stat8 the chain is at time step,

whereA ([T —1,T]|S) = J{_,A(t;x|S)dt.

Repeat steps 4-9 jp=2,...,50.

o b w

~ (o2

© 00

Metropolis-Hastings:

— Very similar to the one in Appendix A.

— The forward algorithm needs to be ran for each of the
j =1,...,50 objects so that the log-likelihood’
z?gleg” (assuming independence of the objects).

— The log-posterior is obtained essentially as in Egn (14).
However, we restrict the posterior to be zero in areas of
the parameter space other th@in< 6, < 65 to impose
the label-switching measure.

— Strictly positive parameters such fs and ¢ are up-
dated the same asandgs in Appendix A.

— Parameterrand vectors made up of rows from transition
matrix P, excluding zero elements, are updated exactly
like Tin Appendix A.
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