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Abstract Hidden Markov models (HMMs) are flexible, well-
established models useful in a diverse range of applications.
However, one potential limitation of such models lies in their
inability to explicitly structure the holding times of each
hidden state. Hidden semi-Markov models (HSMMs) are
more useful in the latter respect as they incorporate addi-
tional temporal structure by explicit modelling of the hold-
ing times. However, HSMMs have generally received less
attention in the literature, mainly due to their intensive com-
putational requirements. Here a Bayesian implementation of
HSMMs is presented. Recursive algorithms are proposed in
conjunction with Metropolis-Hastings in such a way as to
avoid sampling from the distribution of the hidden state se-
quence in the MCMC sampler. This provides a computation-
ally tractable estimation framework for HSMMs avoiding
the limitations associated with the conventional EM algo-
rithm regarding model flexibility. Performance of the pro-
posed implementation is demonstrated through simulation
experiments as well as an illustrative application relating to
recurrent failures in a network of underground water pipes
where random effects are also included into the HSMM to
allow for pipe heterogeneity.

Keywords HSMM · random effects· MCMC · recursive
algorithms· Bayesian model· water pipes.

1 Introduction and Background

First introduced in speech recognition (see Rabiner (1989)
for a review paper), hidden Markov models (HMMs) have
found increasing use in various applications areas. However,
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despite the usefulness of HMMs, the state holding times are
implicitly geometrically distributed, and this may constitute
a potential limitation (see Guedon (2003) and Tokdar et al.
(2010) for some examples).

A natural extension of the HMM is the hidden semi-
Markov model (HSMM) where holding time distributions
are defined explicitly while retaining the Markovian depen-
dency structure. However, even though the transition be-
tween HMMs and HSMMs is mathematically straightfor-
ward, the complexity of the model increases considerably.
Conceptually, one needs to consider all possible state se-
quences at the same time as all possible holding times for
each state. This renders HSMMs computationally intensive
and as a result, the literature on HSMM applications is con-
siderably smaller than that relating to HMMs.

In this paper, a Bayesian formulation of HSMMs is con-
sidered, along with associated methods for MCMC sam-
pling. The proposed approach provides a computationally
efficient estimation framework for HSMMs at the same time
as allowing for further flexibility, for instance the inclusion
of random effects. In this section, background on HSMMs
is provided while in Section 2 the model formulation is pre-
sented. In Section 3 a recursive method for likelihood calcu-
lation is presented as well as details on MCMC model esti-
mation. Simulation results and an application to modelling
recurrent failures in underground water pipes are presented
in Section 4. Finally in Section 5, a summary is provided
along with conclusions.

A few examples of applications that have found use for
HMMs include: climate modelling where HMMs are used
for downscaling precipitation forecasts (Bellone et al., 2000),
in economics HMMs are used to capture non-stationarity
in share price return series (Rydén et al., 1998), in medical
applications to model disease progression in cancer studies
(Kozumi, 2000; Jouyaux et al., 2000), in genetics (Yau et al.,
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2011), in mechanical engineering (Jardine et al., 2006) and
several others.

HSMMs were first introduced by Ferguson (1980) with
an application in speech recognition (see Guedon (1992) for
a thorough review of HMMs and HSMMs in speech process-
ing applications). Since then, the popularity of HSMMs has
increased in many disciples such as: computer science (e.g.
Levinson (1986)); engineering (e.g. Dong and He (2007));
climate (e.g. Sansom and Thomson (2001)); finance (e.g.
Bulla and Bulla (2006)); computational biology (e.g. Schmi-
dler et al. (2000)) and many more (see Yu (2010) for a more
detailed list).

The traditional tool for fitting HMMs and HSMMs is
the EM algorithm where recursive (forward-backward) al-
gorithms are used for calculating the otherwise computa-
tionally intensive likelihood of these models. These algo-
rithms, discussed in more detail in Section 3, make use of the
short term memory and discrete nature of the latent chains to
efficiently evaluate the likelihood. Guedon (2003) uses these
recursive algorithms along with the EM algorithm for esti-
mating HSMMs and more recently, Bulla et al. (2010) have
written an R package (R Development Core Team, 2012)
which implements HSMMs using the approach in Guedon
(2003). The limitation in using these techniques for estimat-
ing HMMs and HSMMs lies in model flexibility whereas a
Bayesian approach to model fitting enables the full potential
of these latent structure models.

HMMs and HSMMs fit naturally into the Bayesian con-
text since these are essentially hierarchical models where
the data are assumed to follow a suitably chosen probabilis-
tic process (the conditional model) given the latent Markov
chain. In particular, HMMs may be viewed as random ef-
fect models where the unobserved random quantities are in-
stances of the hidden chain. This fact was used in Chib (1996)
who considered a Gibbs sampler for estimating HMMs by
deriving and directly sampling from the conditional distri-
bution of the hidden state sequence, instead of updating the
joint distribution of the chain state and the data at each time
step. Other work involving Bayesian HMMs includes Scott
(2002), Guha et al. (2008) and Yau et al. (2011). Because
of the associated computational difficulties involved with
MCMC, few authors have considered a Bayesian approach
to HSMMs.

The method in Chib (1996) relies on the Markov struc-
ture of the model and is thus not applicable for HSMMs
where the waiting times are not geometric. This point was
addressed in Tokdar et al. (2010) where Chib’s method was
adapted and a Gibbs sampler was used to fit a two-state
HSMM. However this approach requires derivation of the
full conditionals for each unknown quantity given the data
and all other unknown quantities including the hidden state
sequence and in practice, this limits the degree of complex-
ity that can be considered in the model formulation.

In the following sections in this paper, we instead advo-
cate the use of recursive algorithms along with Metropolis-
Hastings for estimation of HSMMs. This avoids sampling
from the conditional distribution of the hidden state sequence
by using the joint distribution of the hidden states and the
data in the likelihood. This approach provides a computa-
tionally efficient estimation framework whilst also allowing
for considerable flexibility in model formulation including
for example, use of random effects. Note however, that there
has been recent work by Dewar et al. (2012) and Johnson
and Willsky (2012) on Bayesian HSMMs using computa-
tionally efficient Gibbs samplers. We refer to these papers
later, in sections 3 and 5.

2 Model formulation

This section focuses on formulating the likelihood of a gen-
eral HSMM in time. The latent semi-Markov chain is dis-
crete (in time) and the conditional model is defined through
a random variableY(t) given the state of the chain att.

2.1 Hidden Markov and Hidden semi-Markov Models

In a Hidden Markov model (HMM), the conditional model
assumed for the observed data depends on an underlying
Markov chain with discrete state spaceS∈ {1, . . . ,M}, de-
fined by an initial distributionπ = (π(1), . . . ,π(M)) and a
transition matrixP= {pi, j} wherepi, j = Pr(STk = j|STk−1 =

i) and ∑ j pi, j = 1. Note thatTk,k = 0,1,2, . . . are the dis-
crete time steps of the chain andSTk is the state of the chain
at Tk. For a discrete Markov chain, the length of timeτ that
a statei remains in, is implicitly geometrically distributed:
hi(τ) = (pii )

τ−1(1− pii) wherehi(τ) is the holding time dis-
tribution.

The hidden semi-Markov model (HSMM) allows explicit
specification of the holding time distributions. A discrete
semi-Markov chain can be defined by an initial distribu-
tion π , a transition matrixP = {pi, j} where p j , j = 0 and
∑ j pi, j = 1, and a set of holding time distributions for each
state{h1(τ;φ1),h2(τ;φ2), . . . ,hM(τ;φM)}with associated pa-
rametersφ = (φ1, . . . ,φM). Self transitions are not allowed
(p j , j=0) as this conflicts with the definition of holding times
between state changes.

Suppose now that a semi-Markov chain has been ob-
served in the interval[T0,Tend] and thatQ−1 state changes
have occurred with holding time intervals(τ1,τ2, . . . ,τQ).
The likelihood, assuming right censoring atTend is:

LMC(S1, . . . ,SQ,τ1, . . . ,τQ;π,P,φ ) =

π(S1)
Q−1

∏
k=1

hSk(τk;φk)pSk,Sk+1 ×Pr(τ > τQ;φQ). (1)
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where Pr(τ > τQ;φQ) is the survival function ofhSQ(τQ;φQ).
In the non-censored case, i.e. a state change took place at
Tend, thenQ state changes have occurred and the likelihood
is given byπ(S1)∏Q

k=1hSk(τk;φk)pSk,Sk+1. It is assumed that
once the chain enters a state, it will stay there for at least
one time step. This implies that any distribution chosen to
characterisehS() must be zero-truncated.

For a more general semi-Markov chain, one could allow
for M(M − 1) holding time distributionshi, j(τ;φi, j ) where
i 6= j. Then the holding time distributions depend on the
previous state. This generalisation is straightforward and the
formulations presented subsequently can easily be adjusted
to satisfy this.

2.2 Semi-Markov modulated models

Consider a general random variableY(t), wheret is time,
observed in some arbitrary time period[T0,Tend] at times
T0 ≤ t1, t2, . . . , tn ≤Tend to obtain observationsy(t1), . . . ,y(tn).
Let f (Y(t)|θSt ,St) be the probability model forY(t) with
parametersθSt , where for the moment we assume thatSt is
not random. Assuming independence between eachY(t), the
joint likelihood of the observations is∏n

i=1 f (y(ti)|θSti
,Sti ).

For notational convenience, suppose that for time intervalτ,
y(τ) =

{

y(t j)
}

for all t j ∈ τ, so that

L(y(τ)|θSt ,St) = ∏
j :t j∈τ

f
(

y(t j)|θSt j
,St j

)

(2)

is the likelihood contribution of the data in time intervalτ.
Now suppose that a semi-Markov chainSt is the under-

lying process driving the conditional modelf (Y(t)|θSt ,St).
Given that the chain was observed, the likelihood of this
semi-Markov modulated process is formulated by combin-
ing the (now) conditional likelihood of the observations in
Eqn (2) and the likelihood of the chain in Eqn (1):

LSMM(D;Θ) = π(S1)
Q−1

∏
k=1

hSk(τk;φk)L(y(τk)|θSk,Sk)pSk,Sk+1

× Pr(τ > τQ;φQ)L(y(τQ)|θSQ,SQ) (3)

whereD = (T0,y(t1), . . . ,y(tn),Tend;S1, . . . ,SQ,τ1, . . . ,τQ)

andΘ = (θS,π,P,φ ). Note that we formulate the likelihood
for the (more realistic) case of right-censored data and that
the modification to the likelihood is trivial (see section 2.1)
for the case where a state change occurred atTend.

Because the likelihood in Eqn (3) depends on having ob-
served the chain, to formulate the HSMM likelihood, Eqn
(3) needs to be summed over all possible statesS∈ (1, . . . ,M)
and all possible time intervalsτ ∈ (1,2, . . . ,Tend):

LHSMM(T0,y(t1), . . . ,y(tn),Tend;Θ) =

∑
τ1+···+τQ=Tend

M

∑
S1=1

· · ·
M

∑
SQ=1

LSMM(D;Θ). (4)

The observed data are just the observed values at each occur-
rencey(t j) and the bounds of the observation period[T0,Tend].

The model presented here is one which allows jumps to
and from a number of parallel ongoing processesY(t), with
the jumps being controlled by the hidden chain. The Marko-
vian structure implicitly introduces correlation betweenob-
servations. Note that a specific model for theY(t) has not
been specified other than making the assumption of indepen-
dence. Note also that an upper limit has not been imposed on
the holding time distributions so it is theoretically possible
for a particular state to occupy the whole observation period.

3 Bayesian model implementation

3.1 Discretisation

The evaluation of the likelihood in Eqn (4) is computation-
ally prohibitive for any reasonable length of observation pe-
riod [T0,Tend] and number of latent states. We show in this
section how recursive algorithms analogous to those used in
HMMs (Baum et al., 1970) may be used to overcome that
problem.

The recursive algorithms in HMMs depend on the latent
chain being discrete in time, where in each time step the joint
distribution of chain and data is calculated. To use these al-
gorithms in HSMMs, we need to conceptually ‘discretise’
time in steps, rather than work with holding time intervals.
The holding time distributions of HSMMs considered here
are discrete, so it is easy to do so for the latent process. How-
ever, it is important that the conditional modelf (Y(t)|θs,S)
for the observations has conditionally orthogonal increments
given the stateS. This is possible where the random variable
Y(t) is either independent of time or it is a stochastic tem-
poral process with independent increments (i.e. for anyt1 <
t2 < · · ·< tn, Y(t2)−Y(t1),Y(t3)−Y(t2), . . . ,Y(tn)−Y(tn−1)

are independent).

Suppose the observation period is divided in equal time
stepsT0,T1, . . . ,Tend. The ‘discretised’ version of a HSMM
is a process which starts atT0 with probabilityπ(ST0), then
ST0 is held for at least one time step and the observed data at
T1 are the events that occurred in(T0,T1]. The process will
either keep holdingST0 until T2 or enter another state with
some probability taken from the appropriate entry ofP, and
hold that for at least one time step. The rest follows accord-
ingly. Note that the discrete time steps of the chainT0,T1, . . .

are deliberately different from the time stepst1, t2, . . . of the
observations for the sake of generality. The two may often be
the same, however there may be cases where the time steps
of the chain are larger, e.g. hidden chain captures monthly
effects on data recorded daily.



4 Economou et al.

3.2 Recursive algorithms - Forward

A forward variablevT( j) is considered sequentially at each
discrete time stepT = T1,T2, . . . ,Tend (Rabiner, 1989) where

vT( j) = Pr(data up toT and chain exitsST = j) ,

i.e. the joint probability of the data up toT and the chain
transitioning out of statej at time stepT, meaning that the
chain occupies statej at T but jumps to statei 6= j at T +1.
As with HMMs, vT( j) can be computed recursively:

vT1( j) = π( j)h j (1;φ j)L(y(τ0,1)|θ j ,S= j)

vTk( j) = π( j)h j (k;φ j)L
(

y(τ0,k)|θ j ,S= j
)

(5)

+
k−1

∑
m=1

M

∑
i=1

vTm(i)pi, jh j (k−m;φ j)L
(

y(τm,k)|θ j ,S= j
)

,

whereτi, j = [Ti ,Tj ]. Summing the last variablevTend( j) over
all states gives the likelihood in Eqn (4). Note that the com-
plexity of the forward algorithm for HSMMs isO(T2

end)which
is significantly more than theO(Tend) complexity for HMMs.
In practice, it may be sensible to restrict the support of the
holding time distributions (Yu, 2010) especially if there are
physical arguments as to how long a state can be occupied.
The holding time distributions are then truncated which in
turn reduces the complexity of the forward algorithm but
restricts flexibility. Dewar et al. (2012) propose a Bayesian
implementation of HSMMs where they introduce a method
which dynamically truncates the holding time distributions
to increase efficiency. The method theoretically allows a state
to occupy the whole observation period but in practice it is
more efficient, using carefully chosen auxiliary variablesto
restrict the outermost summation in Eqn (5).

Forward variables present an elegant way of evaluating
the joint distribution of the data and the hidden chain. How-
ever, multiplications of probabilities are involved and these
rapidly get smaller, leading to potential computer underflow.
An efficient way to prevent underflow (see Devijver (1985)
and references therein) is by scaling the forward probabil-
ities at each time step. The idea is to work with the con-
ditional distribution of the states (which sums to 1) instead
of the joint distribution of the states and the data. However,
care is needed if the intention is to evaluate the likelihood
and one needs to keep track of the scaling factors until the
last time step.

In HMMs, one may scale at each time step and simply
“re-scale” at the last time step to obtain the likelihood. In
HSMMs this is not possible since at each new time step, an
extra term is introduced which does not depend onvT−1( j).
This term, given in Eqn (5), is the probability that a state has
been held from the start of the observation period. Because
these extra terms do not contain any scaled components, re-
scaling simply at the last time step to obtain the likelihoodis
invalid. It is therefore necessary to “re-scale before scaling”
at each step in order to calculate the HSMM likelihood.

Scott (2002) gives a matrix representation of the forward
(and backward) algorithm in HMMs which aids in better un-
derstanding these algorithms. A forward matrixAT is de-
fined at each stepT whose(i, j)th element is the probability
of occupying statej at T given that: statei was occupied at
T −1 and the data up toT. Summing the rows of these ma-
trices provides the necessary terms for recursion. EachAT is
scaled so that all elements sum to 1 where the scaling fac-
tor is the joint likelihood (Eqn 4) up to timeT. However, to
keep track of the likelihood untilTend, at each new stepT
the scaling factor atT −1 needs to be multiplied back inAT

before scaling it. This is what we mean by “re-scale before
scaling”. The re-scaling occurs after summations to avoid
underflow. Here, we formulate the HSMM forward recur-
sion similarly performing as many summations as possible
before re-scaling.

To describe the forward recursion, we first define several
quantities. Define forward matricesAT = {aT,i, j} where

aT,i, j = Pr(ST−1 = i and chain exitsST = j|data up toT)

is the probability of exiting statej atT given being in statei
atT −1, conditional on the data up toT. Summing the rows
of this matrix gives vectors

αT( j) = Pr(chain exitsST = j|data up to T).

Note thatvT( j) andαT( j) are related - the latter is a scaled
version of the former, so that its elements add to 1. Clearly,
the off-diagonal terms ofAT are ‘easier’ to work with since
they indicate a state change and their calculation is similar as
in HMMs with the exception of having to include the hold-
ing time probability of 1 time step (fromT − 1 to T). The
diagonal entries however, are more complicated since they
reflect exiting statej at T given statej atT −1.

Define quantityδi, j ,T whereδi,i,T = 0 and:

δi, j ,T = Pr(ST−1 = i and chain exitsST = j|data up toT),

which are the off-diagonal(i, j)th entries ofAT . δi, j ,T may
be calculated recursively usingαT( j) as in HMMs.

Further, define quantitiesξ j andγ j which make up the
diagonal entries ofAT :

ξT( j) = Pr(ST−1 = j and chain exitsST = j and at least one

state change has occurred beforeT −1|data up toT),

γT( j) = Pr(ST−1 = j and chain exitsST = j and no state

change occurred beforeT −1|data up toT).

γT( j) relates to holding statej from the start (i.e. fromT0)
and cannot be calculated sequentially likeξT( j).

Given the time-independence (or independent increments)
assumption of the conditional modelf (Y(t)|θS,S), we can
increase computational efficiency by pre-calculating vectors:

F j(k) = L(y(τk−1,k)|θ j ,S= j) for k= 1,2, . . . ,Tend,
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relating to the conditional likelihood contributions at each
time step. In addition, we pre-calculate vectors whose el-
ements correspond to ratios of probabilities from holding
time distributions:

H j =

(

h j(2;φ j)

h j(1;φ j)
,
h j(3;φ j)

h j(2;φ j)
, . . . ,

h j(Tend−T0;φ j)

h j(Tend−T0−1;φ j)

)

for j = 1,2, . . . ,M, which will increase efficiency when cal-
culating the diagonals ofAT . Note that eachH j has length
(Tend− T0 − 1). At each time stepT, eachξT−Ta( j) with
Ta = 1,2, . . . ,T − 1 can be multiplied with the appropriate
entries ofF j andH j , to accumulate information on the prob-
ability of holding statej up toT given that at least one state
change has occurred.

Let the likelihood of the HSMM at timeT be denoted
by ℓT . Then, the forward algorithm forT = T1, . . . ,Tend is as
follows:

T1 : γT1( j) = vT1( j) = π( j)h j(1;φ j )Fj (1),

ξT1( j) = δi, j ,T1 = 0,

ℓT1 =
M

∑
j=1

γT1( j), αT1( j) = γT1( j)/ℓT1 ,

{aT1, j , j} = αT1( j) andaT1,i, j = 0.

T2 : γT2( j) = γT1( j)H j(1)Fj (2),

δi, j ,T2 = αT1(i)pi, jh j (1;φ j )Fj (2),

ξT2( j) =

[

∑
i 6= j

δi, j ,T2

]

× ℓT1 (re-scale),

vT2( j) = γT2( j)+ξT2( j),

ℓT2 =
M

∑
j=1

vT2( j), αT2( j) = vT2( j)/ℓT2 (scale),

{aT2, j , j} = γT2( j) andaT1,i, j = ℓT1δi, j ,T2.

TN ≥ T3 : γTN ( j) = γTN−1( j)H j (N−1)Fj (N),

δi, j ,TN = αTN−1(i)pi, jh j (1;φ j)Fj (N),

ξTk( j) = ξTk( j)H j (N−k)Fj (N) for k= 2, . . . ,N−1,

ξTN ( j) =

[

∑
i 6= j

δi, j ,TN

]

× ℓTN−1,

vTN ( j) = γTN ( j)+
TN−1

∑
u=2

ξu( j)+ξTN ( j),

ℓTN =
M

∑
j=1

vTN ( j),αTN( j) = vTN ( j)/ℓTN ,

{aT2, j , j} =
1
ℓTN

(

γTN ( j)+
TN−1

∑
u=2

ξu( j)

)

andaT1,i, j =
1
ℓTN

(

ℓTN−1δi, j ,TN

)

.

At the last time stepT = Tend, the survivor function of the
holding times should be used unless the assumption of forc-
ing a state change at the last time step is appropriate. The
HSMM likelihood in Eqn (4) is given byℓTend.

Note that the conditional modelf (Y(t)|θS,S) is arbi-
trary, as long as eitherY(t) is independent if time or it is a
process with independent increments. Combinations of dif-
ferent models forY(t) are also possible where for example
each hidden state relates to a different conditional model.

Underflow can still present problems so working on the
log scale is sensible. The only problem is then how to eval-
uate log(X+Y) from log(X) and log(Y). One possibility
would be to letM = max(log(X), log(Y)) so that:

log(X+Y) = log
(

elog(X)−M +elog(Y)−M
)

+M,

which is a method immune to underflow since in the worst
case log(X+Y) = M.

3.3 Recursive algorithms - Backward

The backward algorithm, as presented in Scott (2002), con-
structs backward matricesBT = {bT,i, j} such that:

bT,i, j =Pr(ST−1 = i and chain occupiesST = j|data up toTend).

There are two differences between the elementsaT,i, j of the
forward matrices andbT,i, j : first, the latter depend on all ob-
served data instead of just data up toT and second, thebT,i, j

relate to the probability of the chain occupying statej at T
but not necessarily transitioning out ofj in the next time
step. So in order to implement the backward algorithm, we
need to alter the forward algorithm by effectively replacing
the holding time distributionsh j(τ;φ j ) with the correspond-
ing survival functions Pr(τ ≥ t) to obtain forward matrices
A′

T = {a′T,i, j} where

a′T,i, j =Pr(ST−1 = i and chain occupiesST = j|data up toT).

Once the forward matricesA′
T have been calculated, back-

ward matrices are obtained by

bT,i, j =
a′T,i, j
α ′

T( j)
×βT+1( j)

= Pr(ST−1 = i|chain occupiesST = j,data up toT)

× Pr(chain occupiesST = j|data up toTend),

where as before, the variablesα ′
T( j) are calculated by sum-

ming the rows ofA′
T and are defined as:

α ′
T( j) = Pr(chain occupiesST = j|data up toT).

The variablesβT+1( j) are calculated by summing the columns
of BT+1 and are defined as:

βT+1( j) = Pr(chain occupiesST = j|data up toTend)

and note thatBTend = A′
Tend

. Simply put, this algorithm start-
ing from Tend modifies (or updates) the elements ofA′

T so
that the sum of its rows is equal to the sum of the columns
of BT+1.

The backward matricesBT are by definition scaled so
that their elements sum to 1. Summing the rows of each
BT , gives a vector corresponding to the distribution of states
p(ST) at time stepT given all the data, which is effectively
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the marginal distribution of each state at each time step. The
distribution p(ST) can be used to summarise the distribu-
tion p(S) of the whole state sequence. Unlike in HMMs, the
backward algorithm cannot be implemented during estima-
tion as the forward algorithm needs to be modified.

However, in some applications such as gene sequencing,
it is of interest to estimate the most likely state trajectory
rather than the marginal distribution of each state separately.
Maximum a posteriori (MAP) estimation can be used, which
finds the mode of the posterior distribution for the state tra-
jectory. In other words, MAP is used to find the state trajec-
tory that maximises the joint posterior of the hidden states
(see Scott (2002) for details).

3.4 Metropolis-Hastings

Upon evaluation of the likelihood using the forward algo-
rithm, the Metropolis-Hastings (MH) algorithm can be used
directly for parameter estimation. A Gibbs sampler is also
possible and Scott (2002) presents a feasible implementa-
tion in the case of HMMs where the forward-backward al-
gorithm is used to obtain samples of the hidden chain se-
quence and utilise them to perform Gibbs sampling on the
conditional model. As mentioned earlier, sampling the state
sequence can be avoided in each MCMC step by integrating
out the state sequence and this is effectively done here by
simply evaluating the likelihood and using it to evaluate the
acceptance probability in MH.

The difficulty in using MH often lies in the choice and
tuning of the proposal distributionq(θ ∗|θ). For HSMMs,
the dimension of the parameter space can be large with each
parameter having different support. For instance, parame-
ters inπ and rows ofP take values on[0,1] and in general
are not independent. An easy choice for those parameters is
to use an independence sampler whereq(π1) = U(0,1) and
q(πk|π1, . . . ,πk−1) = U(0,1−∑k−1

i=1 πi) for k = 1, . . . ,M −1
so that using Bayes’ theorem,

q(π1, . . . ,πM−1) = q(π1)q(π2|π1) · · ·q(πM−1|π1, . . . ,πM−2).

(6)

An alternative approach is to use an independence sam-
pler for π where the proposal is a Dirichlet distribution:
π ∼ Dir(1). The independence sampler is easy to use, how-
ever it typically leads to slow convergence since information
embedded in the existing location of the chain is ignored.
Marin and Robert (1997) propose a random walk sampler
where the proposalq(π∗|π) for π is given by:

q(π∗|π) = Dir(απ1, . . . ,απM), (7)

where E
[

π∗
j

]

= π j , giving a proposal centred at the previous

value of the chain. Large values ofα produce ‘moves’ that

are more local, leading to higher acceptance rate. Marin and
Robert (1997) suggest to either chooseα at random from
a predetermined set of values for each MCMC iteration or
perform prior small runs to determine a reasonable value.

The Dirichlet proposal, although elegant, has only one
‘tuning’ parameter (α) controlling the variance of the pro-
posal. A more flexible approach would be to use a multivari-
ate Gaussian proposal after a logistic transformation. More
specifically, letπ−1 = (π2, . . . ,πM) and use the proposal

q
(

log(π∗
−1/π∗

1) | log(π−1/π1)
)

∼ N(log(π−1/π1),Σ) (8)

whereΣ is a diagonal matrix and entries in the diagonal are
variances controlling the acceptance rate for each element.
Transforming back is trivial,π∗

i = 1/(1+e−x) where x is a
draw from (8). More control over the proposal can lead to
smaller rejection rates and improved mixing relative to (7).

In addition to the parameters of the hidden chain, the
parameters of both the conditional model and holding time
distributions may be sampled using a Normal random walk
sampler. Suitable transformations may be necessary to ac-
commodate certain parameters. For instance, if arbitrary pa-
rameterφ ∈ (0,∞) thenφ∗ = exp(X∗) is a suitable candidate
whereX∗|X ∼N(X = log(φ),σ2). In the case of the Normal
distribution the proposal forφ , using general transformation
theory, isq(φ∗|φ) ∼ N

(

log(φ),σ2
)

× (φ∗)−1 meaning that
the ratio of proposals in the acceptance probability calcula-
tion simplifies toq(φ |φ∗)/q(φ∗|φ) = φ∗/φ .

Proposal distributions from different samplers may be
combined, such as the random walk and the independence
sampler. The drawback of such a convoluted proposal is
loss of control in trying to achieve a desired acceptance rate.
Componentwise MH can be used where a block of parame-
ters is updated at each MCMC iteration. Gelman et al. (1996)
concluded that for high dimensional problems, optimal ac-
ceptance rates lie around 24% whereas other authors point
towards acceptance rates in the range of 20% to 50% (Gamer-
man, 1997).

3.5 Label switching

As in the case of mixture models, the problem of label switch-
ing may arise when using MCMC to fit HMMs and HSMMs.
The issue relates to identifiability and is due to the invari-
ance of the likelihood under relabelling of the hidden states
(Richardson and Green, 1997; Celeux et al., 2000). The like-
lihood invariance directly affects the (joint) posterior distri-
bution of the parameters. Stephens (2000) states that label
switching may lead to a highly symmetric and multi-modal
posterior making it difficult to summarise, especially by us-
ing marginal distributions as these are likely to be inappro-
priate. Label switching can be diagnosed from time series
plots of MCMC parameter samples as well as density es-
timation plots. Signs of jumps in the former coupled with
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associated multi-modality in the latter will indicate label
switching issues. A possible prevention technique lies in or-
dering the states in some way. This is difficult to determine
from the data due to the latent nature of the model. A sen-
sible way is to constrain parameters so that if label switch-
ing occurs, these constraints are violated. A typical example
would be to constrain parameters of the conditional model
which relate to the mean.

Although constraints may be imposed by using appro-
priate proposals, it is also possible to use appropriate pri-
ors which have a density of zero in the areas where viola-
tions occur (Scott, 2002). This will disrupt the symmetry
in the posterior by breaking the symmetry in the prior, thus
providing a solution to label switching (Stephens, 2000). In
the context of MH, using such priors will result in rejection
of any proposed candidates outside the range of the con-
straints. However, this effectively implies using priors that
are informative. Other authors have also considered impos-
ing constraints by re-parametrising the model, see for exam-
ple Robert and Titterington (1998).

Using constraints such as parameter ordering helps with
the identifiability issue, but it is not a ‘perfect’ solution.
Celeux et al. (2000) argue that the effects of parameter or-
dering are less benign than thought since the design and per-
formance of the MCMC sampler are directly affected. The
authors also stress that the true posterior hasM! modes (M =

number of hidden states) and that a constrained model typ-
ically concentrates on a single mode, but may not result in
the same inference if the constraints were changed. Celeux
et al. (2000) propose a method using MCMC to sample from
the true multi-modal posterior and develop ways to reorder
samples as if they all came from a single mode. Similarly,
Stephens (2000) consider relabelling MCMC output based
upon minimising the posterior expected loss.

In addition to these methods of coping with label switch-
ing, any natural ordering that may be implied by knowledge
of the behaviour hidden chain are useful since restrictionson
the posterior are based on physical understanding. Prior in-
formation on the latent part of the model may be also helpful
in model design where, for instance, absorbing states may be
included in the transition matrix.

4 Model application

4.1 Simulation experiments

We begin with a relatively simple model to illustrate the
proposed mechanisms for fitting HSMMs. The conditional
model is Gaussian where the mean depends on a hidden
chain with two states,

Y(t)|S∼ N(µS,σ2) S= 1,2. (9)

The parameters of the hidden chain are the initial distribu-
tion π and the parametersφS of the holding time distribu-
tions which we assume to be zero-truncated Poisson:

hS(τ|τ > 0;φS) =
e−φSφ τ

S

τ!(1−e−φS)
S= 1,2. (10)

Because there are just two states, the 2×2 transition matrix
P= {pi, j} is defined aspi,i = 0 andpi, j = 1.

Data from the model in Eqn (9) were simulated once
for t = 1, . . . ,500 time steps, with parameter values given in
Table 1. The first 400 time steps were used for model fit-
ting while the last 100 were kept for out-of-sample predic-
tion purposes. Two MCMC chains were run, each for 10000
samples and thinned by 5. After thinning, 500 samples were
used as burn-in for each chain resulting in 3000 samples
in total. The model was coded in R and each chain took
around 35 minutes to run on a reasonably fast machine (Intel
Q6850 3GHz with 4GB RAM). Four random walk samplers
were used, one for eachµS,σ2,πS and φS. For parameter
π = {πS}, the Dirichlet proposal in Eqn (7) was used with
α = 10. For this and subsequent model implementations, the
acceptance rate for each sampler was adjusted to be in the
range[0.2,0.5].

Table 1 Priors, inputs and estimates, whereκ = 0.5 andη = 0.005

Param. Prior Input Posterior 95% Cr.I.
Values Mean (s.e.)

µ1 N(0,1000) 3 2.98 (0.06) [2.87,3.09]
µ2 N(0,1000) 5 4.88 (0.13) [4.62,5.13]
1/σ 2 Gam(κ ,η) 1 1.03 (0.04) [0.96,1.12]
π1 Dir(1,1,1) 0.3 0.28 (0.24) [0.01,0.85]
π2 Dir(1,1,1) 0.7 0.72 (0.24) [0.15,0.99]
φ1 Gam(κ ,η) 30 29.13 (1.84) [25.70,32.80]
φ2 Gam(κ ,η) 5 7.66 (0.99) [5.64,9.75]

Table 1 shows the input values for each parameter as
well as prior distributions, estimates (posterior means),stan-
dard errors and credible intervals. Forπ (and later for rows
of P), we use a flat Dir(1) prior distribution. Such a prior
is flexible in the sense that the marginal priors for eachπS

have Beta distributions with parameters depending on the
parameters of the Dirichlet which here we set equal to 1.
Throughout this section, we use a Gamma distributed prior
with large mean and variance for strictly positive parameters
and a zero mean, large variance Gaussian prior for parame-
ters with infinite support.

The estimates in Table 2 show good agreement with the
input values. The top plot in Fig 1, shows the simulated val-
ues ofY(t) as well as the simulated chain sequence. The
backward algorithm in section 3.3 was implemented to ob-
tain the posterior distribution ofp(ST), the probability dis-
tribution of each state at each time step. The middle plot in
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Fig 1 shows the the posterior mean ofp(ST = 2) from the
HSMM in Eqn (9). For completeness, the bottom plot in Fig
1 shows the posterior mean ofp(ST = 2) from an HMM
implemented to the same data. The clusters of high proba-
bility are more ‘sharp’ for the HMM in the observation pe-
riod (T = 1, . . . ,400) and this is due to the the exponentially
decaying tails of the Geometric distribution. The HSMM
also recovers the high probability clusters while allowing
for holding time distributions with fatter tails, which ex-
plains the lack of ‘sharpness’. However, the predicted chain
sequence does depend on the observed data so to see the un-
derlying difference between the HMM and HSMM we com-
pare the predicted state sequence in the prediction period
(T = 401, . . . ,500). It is difficult for the HMM to reproduce
the true state sequence as highlighted in the bottom plot of
Fig 1 (in the long-run, the state probabilities come from the
stationary distribution of the hidden Markov chain which is
constant in time).

A further simulation experiment involves simulated data
where the conditional model is a non-homogeneous Poisson
process (NHPP); we use the acronym HSMM-NHPP for the
joint model. The NHPP is a counting process, describing oc-
currences in time where the intensity function (occurrence
rate) is temporally varying. Specifically, we simulateJ in-
stances from the HSMM-NHPP where the intensity function
λ (t|S) depends on a hidden semi-Markov chainS (events
may be thought of as failures ini = 1, . . . ,J components and
the intensity function as the failure rate). A NHPP whose
intensity function varies according to a Markov process is
sometimes known in the literature as a Markov modulated
Poisson process (MMPP) (Scott and Smyth, 2003; Fearn-
head and Sherlock, 2006). The Markov modulation indi-
rectly introduces correlation between successive inter-arrival
times, a property that the NHPP alone does not possess; see
Fig 2 for a particular realisation of this process.

With slight change of notation, we introduce the ran-
dom variableY(ta, tb), the number of events in the interval
(ta, tb] where 0≤ ta < tb, which for the NHPP is Poisson dis-
tributed. The (conditional) likelihood contributionL(y[ta, tb|S])
is of a Poisson random variable with mean

∫ tb
ta λ (t|S). Sup-

pose that each componenti has failedni times atti,1, . . . , ti,ni

and that the intensity function obeys the power law such
that:

λ (t;xi |S) = θSt
θS−1exp{β0+β1xi}, (11)

where the shape parameterθS> 0 is different for each stateS
of the hidden chain.Y(ta, tb) andλ (t;xi |S) are related by the
fact that E(Y(ta, tb)) =

∫ tb
ta λ (t;xi |S). The single covariatexi

has an associated parameterβ1, andβ0 is the intercept which
also relates to the scale parameter of the power law. Depend-
ing on values ofθS, the rate is either increasing/decreasing
non-linearly with time, or it is constant ifθS = 1. Note that
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Fig. 1 Top: Simulated values and state sequence from the two state
Gaussian model. Middle: Posterior mean ofp(ST = 2), the HSMM
probability of state 2 at each time step given the data. Bottom: Same
as middle but for a HMM. The dashed vertical line correspondsto the
start of the prediction period.

| | |

Fig. 2 Semi-Markov modulated counting process.

although we assume a single underlying semi-Markov pro-
cess, for simulation purposes each imaginary component is
affected by a different realisation of this latent process.

We assume 3 hidden states with initial distributionπ ,
transition matrixP and zero-truncated Poisson holding times
same as Eqn (10) withS= 1,2,3.J= 50 objects were simu-
lated from the 3 state NHPP-HSMM where the time period
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for each ranged from 80 to 150 time steps. Table 2 shows the
priors for each parameter as well as the input values used to
simulate the data. Two chains were run for 6000 iterations
with a burn-in of 1000 and by thinning of 5 this resulted
in 2000 samples from the posterior of each parameter. Each
chain took around 5 hours to run, which we consider accept-
able given the computational intensity involved in calculat-
ing the HSMM likelihood for 50 objects.

Table 2 Priors, inputs and estimates where,κ = 0.5 andη = 0.005

Param. Prior Input Posterior 95% Cr.I.
values mean (s.e.)

θ1 Gam(κ ,η) 0.5 0.50 (0.002) [0.49,0.51]
θ2 Gam(κ ,η) 1 0.99 (0.003) [0.99,1.01]
θ3 Gam(κ ,η) 2 1.99 (0.002) [1.99,2.00]
β0 N(0,1000) -1 -0.99 (0.01) [-1.01,-0.96]
β1 N(0,1000) 0.03 0.03 (0.0001) [0.029,0.031]
π1 Dir(1,1,1) 0.1 0.06 (0.04) [0.002,0.152]
π2 Dir(1,1,1) 0.7 0.72 (0.07) [0.58,0.84]
π3 Dir(1,1,1) 0.3 0.23 (0.07) [0.10,0.37]
p1,2 Dir(1,1) 0.7 0.72 (0.03) [0.64,0.78]
p1,3 Dir(1,1) 0.3 0.29 (0.03) [0.22,0.36]
p2,1 Dir(1,1) 0.2 0.19 (0.03) [0.15,0.25]
p2,3 Dir(1,1) 0.8 0.81 (0.026) [0.75,0.85]
p3,1 Dir(1,1) 0.65 0.68 (0.030) [0.61,0.73]
p3,2 Dir(1,1) 0.35 0.33 (0.030) [0.27,0.39]
φ1 Gam(κ ,η) 15 14.38 (0.27) [13.8,14.9]
φ2 Gam(κ ,η) 10 9.8 (0.20) [9.4,10.2]
φ3 Gam(κ ,η) 2 1.9 (0.09) [1.7,2.1]

To cope with potential label switching, the posterior was
zero unlessθ1 < θ2< θ3 or equivalentlyλ (t|S1= 1)< λ (t|S=
2)< λ (t|S= 3). The model was implemented using a com-
bination of 3 random walk samplers for each of(θS,β0,β1),
φS and(P,π). ForP andπ , the Dirichlet proposal in Eqn (7)
was utilised withα =150 forPandα =75 forπ (these were
chosen by performing small runs prior to the full MCMC).

Table 2 also shows the posterior mean for each fitted pa-
rameter along with standard errors and the 95% credible in-
terval (Cr.I). The approach we have adopted as proposed in
Section 3 leads to posterior means for the parameters which
recover the associated input values used to simulate the data
convincingly with relatively narrow 95% Cr.I.

4.2 Application to pipe failures

Predicting pipe failures or aspects of pipe condition in wa-
ter distribution systems is an essential planning tool for wa-
ter companies. Traditionally, occurrences of pipe failures
are modelled using counting process models such as the
NHPP (Kleiner and Rajani, 2001). However, the complex
processes that give rise to the occurrence of failures are not
fully understood nor always observed which is why con-
ventional counting process models are often unable to per-

form adequately. Factors affecting failures can be relatedto
pipe characteristics (e.g., pipe material, diameter, pastfail-
ure history, etc.), the environment (e.g., soil characteristics,
weather data, corrosivity, traffic conditions, etc.) and the ser-
vice itself (e.g., water pressure, level/type of maintenance,
etc.). Unfortunately, measurements on such factors are rarely
available in data sets making the task of modelling quite
challenging.

The problem is a common one: how to model complex
(temporal) processes with limited amounts of data. The un-
observed processes affecting the underlying failure rate of
each pipe are temporal which makes the use of an HSMM
an appealing adjustment to the conventional modelling of
pipe failures. The available data we use to illustrate this here
consists of yearly number of failures (bursts) in each pipe in
a group of 30 interconnected water pipes forming part of an
underground water distribution network in North America.
For confidentiality reasons, data location and origin cannot
be disclosed but a full description can be given as to the con-
tent of the data. The installation date of each pipe is different
(the earliest being 1947 and the latest being 1959) but they
were all observed until 2003. The only available covariate is
pipe length in metres.

Pipe failures are generally rare events over the lifetime
of a pipe (here the total number of failures in all 30 pipes
over the whole observation period was only 110) so most
data consist of a large number of ‘zeros’ and a small num-
ber of ‘ones’ at each recording time step. Following the ap-
proach in Economou et al. (2012) we therefore consider a
zero-inflated model where each pipe is modelled by a mix-
ture of a zero-generating process and a NHPP. In Economou
et al. (2012) the mixing probability was constant in time but
here we extend this by allowing the mixing probability to be
driven by a latent semi-Markov chain. The parameters of the
chain are assumed to be the same for each pipe because the
pipe group comes from the same network and each pipe is
likely to be affected by the same external unobserved pro-
cesses. Note however that each pipe may experience a dif-
ferent realisation of the chain. In addition, the failure rate of
the NHPP is assumed to depend on a pipe specific random
effect to allow for heterogeneity in the failure mechanism
for each pipe.

Specifically, the model is a HSMM-NHPP with two hid-
den states. One state corresponds to a NHPP with a power
law intensity function whereas the other state relates to a
zero process. The model may be formulated in the follow-
ing way: given the hidden chainS, the model is NHPP with
failure rate

λ (t|S,θi) = θit
θi−1e{β0+β1xi}, if S= 2 (12)

θi ∼ Gamma(α,δ ), i = 1, . . . ,30 (13)

andλ (t|S,θi) = 0 if S= 1. The shape parameterθi is dif-
ferent for each pipe andxi is the pipe length. Furthermore,
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Table 3 Posterior summary;κ = 0.5 andη = 0.005

Param. Prior Posterior 95% Cr.I. R̂
Mean (s.e.)

β0 N(0,1000) -3.89 (0.70) [-5.38,-2.50] 1.02
β1 N(0,1000) 3.29 (0.94) [1.52,5.23] 1.01
φ1 Gam(κ ,η) 0.52 (0.45) [0.002,1.63] 1.01
φ2 Gamκ ,η 0.94 (0.29) [0.471,1.63] 1.01
π1 Dir(1,1) 0.61 (0.27) [0.06,0.982] 1.03
π2 Dir(1,1) 0.39 (0.27) [0.02,0.939] 1.03
α Gam(κ ,η) 26.73 (13.42) [6.23,59.92] 1.23
δ Gam(κ ,η) 23.01 (10.87) [5.93,48.85] 1.26

we assume truncated Poisson distributions for the holding
times of each state as in Eqn (10) and note that the 2× 2
transition matrix is given bypi,i = 0 andpi, j = 1. The only
other unknowns in the model are the parameters of the initial
distributionπ = (π1,π2).

A component-wise random walk MH sampler similar to
the one used for the simulations earlier was used and eachθi

was sampled individually. Two MCMC chains were run and
after a burn-in of 1000, we collected 10000 samples from
each one and thinning by 5 resulted in 4000 samples in total.
Convergence was assessed using the Gelman and RubinR̂
values (Gamerman, 1997) (given in Table 3) indicating con-
vergence (values close to 1). This was also true for eachθi .
Note that label switching was not an issue here as the zero-
process relating toS= 1 has no parameters and indeed none
of the trace plots of posterior samples showed any signs of
label switching (jumps or multi-modality).

Estimates for global model parameters are given in Table
3 along with standard errors and 95% Cr.I. The interval for
β1 does not include zero indicating that the positive effect
of pipe length on the failure rate is significant. Estimates for
φ1 andφ2 imply that the holding times for the state relating
to the zero-process are somewhat smaller on average but in
general the ‘persistence’ of each state is similar and short
term.

Fig 3 plots deviance samples for both data predicted from
the fitted model and for the actual data. This is a posterior
predictive diagnostic model fit test (Gelman et al., 2004) and
a p-value can be estimated to quantify any discrepancies be-
tween model and data according to a quantityT(y,θ ) (y for
data andθ for parameters) which here is chosen to be the
deviance (i.e. minus twice the log-likelihood). Thep-value
here was estimated as 0.44, by(1/N)∑N

i=1 I(T(y(rep),θ i) >
(y,θ i)) implying adequate model fit (an extremep-value im-
plies that the observed data are extreme in relation to data
simulated from the model). Here,I() is the indicator func-
tion which is equal to 1 or 0 if the argument is either true
or false respectively. Also,y(rep) represents data simulated
from the posterior predictive distribution andN is the num-
ber of MCMC samples.
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Fig. 3 Deviance samples - actual (grey) and simulated data (black).
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Fig. 4 Observed and predicted cumulative number of failures. Panels
a), b) and c) are for individual randomly selected pipes whereas d) is
for the whole pipe group. Solid line: observed; Dashed line:predicted;
Grey shaded: 95% prediction intervals.

Plots of observed and predicted cumulative number of
failures per year are shown in Fig 4. The bottom right plot
reflects the whole group of pipes whereas the other three re-
fer to individual pipes. The predicted line is taken as the pos-
terior predictive distribution mean of the yearly cumulative
failure count and the backward algorithm in Section 3.3 was
used to calculate the posterior distribution of the most likely
state sequence. It is clear the model has performed well in
fitting the data both at the individual pipe level as well at the
group level.

For completeness, an HMM has also been implemented
to the pipe data where the conditional model is the same as
Eqns (12) and (13) but the underlying latent model is a two-
state Markov chain. We used the Deviance Information Cri-
terion (DIC) to compare the HMM and HSMM. The DIC
is an estimate of the expected mean squared predictive er-
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ror and may be used to compare models implemented with
MCMC (Spiegelhalter et al., 2002). The measure penalises
model fit for the number of parameters and a smaller DIC
indicates better fit. In this application, the DIC was 585.53
for the HSMM and 711.49 for the HMM, implying that the
HSMM fitted considerably better.

5 Discussion

Bayesian HSMMs have received relatively little attention
in the literature largely because of their computational in-
tractability. In this paper, recursive algorithms were devel-
oped in order to provide a computationally feasible Bayesian
implementation of HSMMs. The implementation was illus-
trated using simulation experiments and a real-life appli-
cation. The model formulation we have presented here is
very general and extremely flexible. Unlike previous uses of
HSMMs, the model may be applied to more that one compo-
nent as demonstrated in the water pipe network application
(see section 4) where each pipe depends on a different reali-
sation of the same hidden process. A feasible generalisation
of that would be to allow each component to be driven by a
different latent chain.

Nevertheless, we did make the assumption in formulat-
ing the likelihood that eitherY(t) are independent in time or
thatY(t) is a stochastic temporal process with independent
increments. Despite these assumptions, the formulation here
allows for a wide range for models, for instance Economou
et al. (2009) have applied a Poisson GLM with time de-
pendent covariates where the intercept is dependent on a
latent semi-Markov chain. In addition, any stochastic pro-
cess in time with independent increments may be used as a
conditional model, for example Poisson process (including
NHPP), Gaussian (or Wiener) process and more generally
Lèvy processes or even a mixture of such processes. Further-
more, no constraints are imposed on non-linearity or where
covariates may be incorporated in the model, including pa-
rameters of the latent chain such as the transition matrix or
the distribution of the holding times.

One aspect that was not discussed in the paper concerns
the choice of the number of hidden states. This is analogous
to the choice of numbers of components in a mixture mod-
elling and can be addressed using reversible jump MCMC
as was done in Robert et al. (2000) for HMMs. We antici-
pate this would be quite computationally intensive for net-
works where many hidden chains are involved. Of course
any physical justification is ideal as in the case of Hughes
et al. (1999) and Bellone et al. (2000) who model precipi-
tation occurrences and the hidden states are linked to unob-
served weather states which link synoptic-scale atmospheric
patterns to local-scale precipitation.

An ‘empirical’ way of deciding the number of states
simplifies to just look at the model output. From practical

experience in simulations (for instance a two-state NHPP-
HSMM was applied to a simple NHPP, i.e. one too many
states), we found that the means of holding time distribu-
tions for many states tend to zero with very small credible
intervals implying there are too many states in the model. In
addition, non-identifiability of state holding times aftercon-
straints have been put in to account for label switching is
also a sign of having more states than necessary.

Johnson and Willsky (2012) proposed a Bayesian imple-
mentation of HSMMs which incorporates the number of la-
tent states in the estimation and uses Gibbs sampling to pro-
vide an efficient estimation mechanism. Specifically, John-
son and Willsky (2012) extend the Hierarchical Dirichlet
Process (HDP) HMM to a HDP-HSMM; the main idea be-
hind HPD-based models is to use a HDP prior over an in-
finite state space, enabling inference on both model param-
eters and state complexity. The HDP is a prior over an in-
finite transition matrix, however each row of the matrix is
linked hierarchically through a hyper-prior so that the tran-
sition distributions tend to have mass concentrated around
a typical set of states; in other words such a prior provides
a tendency to re-use and re-occupy a particular set of states
(from the infinite set). Johnson and Willsky (2012) manage
to maintain the conjugacy of the HDP-HMM for the HDP-
HSMM and use a Gibbs sampler which is potentially faster
than MH with better mixing properties.

Lastly, the primary tool for MCMC implementation in
this paper is Metropolis-Hastings and as presented here, it
may involve many likelihood evaluations per MCMC itera-
tion (component-wise MH). A referee pointed out that data
augmentation is another MCMC implementation technique
which can be computationally more efficient. Data augmen-
tation may be described as the Bayesian analogue of the EM
algorithm (Gilks et al., 1996) and it essentially introduces
auxiliary variables or latent data which are also sampled in
the MCMC. For HMMs and HSMMs, the latent state se-
quence constitutes the auxiliary variables allowing for the
likelihood in Eqn (3) to be used instead of Eqn (4), in sam-
pling from the posterior. However, the likelihood in Eqn (4)
still needs to be evaluated, albeit only once, in order to sam-
ple the auxiliary variables (see Yau et al. (2011) for a recent
application of data augmentation in HMMs). Although MH
can lead to better mixing if proposal distributions are well
chosen, data augmentation will in general be computation-
ally more efficient.

Appendix A: Pseudo code for simulation experiment with
Gaussian observations

Simulate data from 2-state Gaussian HSMM, Eqn (9):

1. Set values forµS,σ ,φS andπS for S= 1,2.
2. Seti = 1 and sample initial stateSi from π = {πS}.
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3. Sample durationτi of Si , from zero-truncated Poisson
with parameterφSi .

4. Sample state transition from distribution corresponding
to Sth

1 row of P.
5. Repeat steps 3 and 4 until∑i τi ≥ 250.
6. If ∑i τi > 250, truncate so that∑i τi = 250.
7. For eachT = 1, . . . ,250, sample from N(µS,σ2) accord-

ing to which stateS the chain is at time stepT.

Metropolis-Hastings:

– Seti = 0 and initialise parametersµ (i)
S ,σ (i),φ (i)

S andπ (i)
S .

– Calculateℓ(i), the log-likelihood using the forward algo-
rithm in section 3.2.

– CalculateP(i), the log-posterior by

P(i) = ℓ(i)+ log
(

p
(

µ (i)
S

))

+ log
(

p
(

1/σ (i)
))

+ log
(

p
(

φ (i)
S

))

+ log
(

p
(

π (i)
S

))

(14)

wherep(·) is the prior for each parameter (Table 1).

Do for i = 1, . . . ,M whereM is the required number of MCMC
iterations:

µS: µ∗
S = µ (i−1)

S + ε, ε ∼ N(0,σ2
µ)

Calculateℓ∗ and henceP∗ using Eqn (14)
Calculate acceptance probability asη =min(1,Ω)where
Ω = exp{P∗−P(i−1)}

SampleU fromU(0,1)

If U ≤ η , setµ (i)
S = µ∗

S, ℓ(i) = ℓ∗ andP(i) = P∗.
σ : σ∗ = exp{log(σ (i−1))+ ε}, ε ∼ N(0,σ2

σ )

Calculateℓ∗ and henceP∗ using Eqn (14)
Calculate acceptance probability asη =min(1,Ω)where

Ω = exp
{

P∗+ log(σ∗)− [P(i−1)+ log(σ (i−1))]
}

SampleU fromU(0,1)
If U ≤ η , setσ (i) = σ∗, ℓ(i) = ℓ∗ andP(i) = P∗.

φS Same asσ , replacingφS with σ .

πS Sampleπ∗ ∼ Dir
(

απ (i−1)
)

Calculateℓ∗ and henceP∗ using Eqn (14)
Calculate acceptance probability asη =min(1,Ω)where

Ω = exp{P∗+ log(d(π (i−1);απ∗))

− [P(i−1)+ log(d(π∗;απ (i−1)))]}

whered(π ;θ ) is a Dirichlet density with parameterθ
SampleU fromU(0,1)

If U ≤ η , setπ (i)
S = π∗

S, ℓ(i) = ℓ∗ andP(i) = P∗.

Adjustσ2
µ ,σ2

σ ,σ2
φ andα to achieve desired acceptance rates.

Note that R code for implementing the HSMMs and HMMs
from both simulation experiments is available both as sup-
plementary material to the paper and onhttp://empslocal.

ex.ac.uk/people/staff/te201/HSMM/.

Appendix B: Pseudo code for simulation experiment with
NHPP observations

Simulate data from 3-state NHPP-HSMM with intensity func-
tion λ (t;x|S) as in Eqn (11), for 50 hypothetical objects:

1. Set values forθS,β0,β1,φS,πS andP for S= 1,2,3.
2. SampleB j ∼U(80,150), for j = 1, . . . ,50, to decide the

observation period in discrete time steps for each object.
3. Samplex j ∼U(50,150) to set values for the covariatex.
4. Setj =1, i = 1 and sample initial stateSi fromπ = {πS}.
5. Sample durationτi of Si , from zero-truncated Poisson

with parameterφSi .
6. Sample state transition from distribution corresponding

to Sth
1 row of P.

7. Repeat steps 3 and 4 until∑i τi ≥ B j .
8. If ∑i τi > B j , truncate so that∑i τi = B j .
9. For eachT = 1, . . . ,B j , sample from Pois(Λ([T−1,T]|S))

according to which stateS the chain is at time stepT,
whereΛ([T −1,T]|S) =

∫ T
T−1 λ (t;x|S)dt.

10. Repeat steps 4–9 jorj = 2, . . . ,50.

Metropolis-Hastings:

– Very similar to the one in Appendix A.
– The forward algorithm needs to be ran for each of the

j = 1, . . . ,50 objects so that the log-likelihoodℓ(i) =

∑50
j=1ℓ

(i)
j (assuming independence of the objects).

– The log-posterior is obtained essentially as in Eqn (14).
However, we restrict the posterior to be zero in areas of
the parameter space other thanθ1 < θ2 < θ3 to impose
the label-switching measure.

– Strictly positive parameters such asθS and φS are up-
dated the same asσ andφS in Appendix A.

– Parameterπ and vectors made up of rows from transition
matrix P, excluding zero elements, are updated exactly
like π in Appendix A.
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