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Recovering Missing Slices of the Discrete Fourier
Transform using Ghosts
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Abstract—The Discrete Fourier Transform (DFT) underpins
the solution to many inverse problems commonly possessing
missing or un-measured frequency information. This incomplete
coverage of Fourier space always produces systematic artefacts
called Ghosts. In this paper, a fast and exact method for
deconvolving cyclic artefacts caused by missing slices of the
DFT using redundant image regions is presented. The slices
discussed here originate from the exact partitioning of DFT
space, under the projective Discrete Radon Transform, called the
Discrete Fourier Slice Theorem. The method has a computational
complexity of O(n log2 n) (for an n = N × N image) and is
constructed from a new cyclic theory of Ghosts. This theory is
also shown to unify several aspects of work done on Ghosts over
the past three decades. The paper concludes with an application
to fast, exact, non-iterative image reconstruction from a highly
asymmetric set of rational angle projections that give rise to sets
of sparse slices within the DFT.

Index Terms—Discrete Radon Transform, Mojette Transform,
Discrete Tomography, Image Reconstruction, Discrete Fourier
Slice Theorem, Ghosts, Number Theoretic Transform, Limited
Angle, Cyclic Ghost Theory

I. INTRODUCTION

The Discrete Fourier Transform (DFT) is an important tool
for inverse problems, where the discrete Fourier representation
of an object is used as a mechanism to recover that object.
The Discrete Fourier Slice Theorem (FST) property of the
DFT, independently developed by Grigoryan and others [1–
4], is especially important for discrete tomographic inverse
problems, where a discrete object can be recovered exactly
from its discrete projected “views” or projections [5].

The Discrete FST provides an exact partitioning of two
dimensional (2D) DFT space into a finite number of one
dimensional (1D) discrete “slices” of equal length. These slices
have discrete slopes m and s with m, s ∈ N0, wrapping around
DFT space in both rows and columns, while tiling the space
perfectly without interpolation [6]. The partitioning is valid for
N ×N spaces, where N = pn, p is prime, n > 1 and p, n ∈ N0.
This includes prime sizes [7], power of two sizes [8–10] and
has also been generalised to composite N [11, 7]. Rectangular
spaces can be handled by zero-padding them to the nearest
square size. A total of N + N/p slices is required to tile all
of 2D DFT space exactly [7]. Fig. 1 gives an example of this
slice partitioning when N is prime.
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Figure 1. The slices of the DFT having a square size of length N = 5.
Grey pixels in (a)-(e) and (f) each represent a slice of different discrete slopes
m and s respectively (indicated by their accompanying vectors [−m, 1] and
[1,−ps]) with the DC coefficient centred (black). Note that each slice wraps
around DFT space (i.e. computed modulo N ) and the six slices tile all of 2D
DFT space at least once without interpolation.

The inverse DFT (iDFT) of the slices corresponds directly
to the projections of the Discrete Radon Transform (DRT) [6].
These projections are computed as sums along the lines formed
by the vectors [1,m] and [ps, 1], i.e. m pixels across and one
pixel down or one pixel across and ps pixels down. Fig. 2 gives
the equivalent projections for the slices of the DFT shown in
Fig. 1. The DRT projections are normally ordered by slope
and translate t, and is often referred to as DRT space. Fig. 3(a)
shows the DRT space of an image of Lena.

By computing N + N/p DRT projections with the set of
slopes m and s as

m = {m : m < N, m ∈ N0} , (1)
s = {s : s < N/p, s ∈ N0} , (2)

and the set of translates or intercepts t as

t = {t : t < N, t ∈ N0} , (3)
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Figure 2. The projections of the DRT that are equivalent to the slices shown
in Fig. 1. (a)-(e) and (f) represent projections at different discrete slopes m
and s (indicated by their accompanying vectors [1,m] and [ps, 1]). Note that
each projection wraps around image space (i.e. computed modulo N ), the
coordinate system of the projection vectors are perpendicular to the DFT space
slice vectors and that each projection tiles all of image space at least once
without interpolation.

where x, y ∈ N0, the 1D DFT of the projections can be placed
into 2D DFT space directly (without interpolation) and the
inverse 2D DFT utilised to recover the image. The slices are
placed along the vectors [−m, 1] and [1,−ps] in 2D DFT space
(see Fig. 1). For a prime-sized image, the result is normalised by
subtracting the total image sum from each pixel (or equivalently
correcting the DC coefficient in DFT space) and dividing by
N . The reconstruction of the image is exact when there is no
noise present in the projections.

It is common that not all projections are available to tile
Fourier space in discrete tomographic inverse problems. This
effectively means there are missing slices or projections, which
introduce artefacts in the reconstruction known as discrete
Ghosts [12]. Ghost artefacts have zero-sums in the projected
directions of the missing data, so that their corresponding Four-
ier coefficients are also zero [12]. They may be superimposed
on an image while still being invisible in the directions of
the missing projections. Fig. 4 gives an example of what a
Ghost can look like as an image.

Missing projections in the DRT produce cyclic artefacts on
the reconstructed image [13, 14] and occur naturally when
the DRT is applied to discrete tomography [13], image/erasure
coding [15] and image processing [16]. Fig. 3(b) gives an
example of missing projections and Ghosts in the DRT.

This paper presents a fast method for exactly removing
Ghost artefacts formed from missing slices of the prime-sized
DFT. The method utilises redundant or known image regions

within the reconstruction to deconvolve these Ghosts artefacts.
The method is constructed from a theory of cyclic Ghosts within
the prime-sized Discrete FST that is also developed in this
work. This theory for the Discrete FST is constructed using
cyclic convolutions and results in algorithms of low compu-
tational complexity (O(n log2 n) for an n = N × N image).
A schematic summary of the process in given in Fig. 3(c).
Finally, the Ghost deconvolution method is applied to exactly
reconstruct images from a highly asymmetric set of rational
angle projections that give rise to sets of sparse slices within
the DFT.

The paper is structured as follows. Previous work on
Ghosts and reconstructing from sparse signals is reviewed
in the next section. This is followed by a theory of cyclic
Ghosts for the Discrete FST in Sec. III. The convolution and
deconvolution techniques for missing slices of the DFT is
presented in Sec. IV. Finally, the results for applying these
techniques in reconstructing an image exactly from a highly
asymmetric set of rational angle projections is presented in
Sec. V.

II. PREVIOUS WORK

Bracewell and Roberts [17] introduced the concept of the
“invisible distribution”, later referred to as Ghosts by Katz [12]
and Cornwell [18], in the context of the Fourier Transform
(FT). These distributions are a consequence of non-unique
solutions arising from an incomplete Fourier space or “u, v
coverage” due to a finite number of measurements. Explicitly,
a classical Ghost or invisible distribution exists where a
continuous theory, i.e. one that utilises an integral transform,
is the mechanism for an inverse problem. For example, the
theory for Computed Tomography (CT) is commonly based
on the FT, and is therefore ill-posed as a result and always
has classical Ghosts [19]. Katz [12] rediscovered the concept
of a Ghost and showed that Ghosts must have zero-sums in
the directions of the missing projections.

Logan [20] presented the uncertainty principle for projections
in the FT and determined that Ghosts are mostly present in
the high frequencies. He proved why low-pass filtering of
the projections, using filters such as the Ram-Lak [21] or
Shepp-Logan [22] filters, is required when reconstructing from
projections in the FT. These and other related filters are still
being used today in modern CT [23]. Louis [24] reformulated
this result in a simpler form using the Hankel Transform.

Katz [12] presented the uncertainty principle for discrete
rational angle projections for square image sizes, where a
projection is computed as sums along the lines formed by
using the vector [b, a] with a, b ∈ Z. These acyclic projections
constitute what is now known as the Mojette Transform
(MT) [25]. Fig. 5 shows a simple example of a MT for a
4× 4 image using three projections.

Katz [12] determined that an N×N image can be reconstruc-
ted exactly from a set of µ rational angle projections [bj , aj ] if
and only if

N 6 max

µ−1∑
j=0

|aj |,
µ−1∑
j=0

|bj |

 . (4)
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(a) (b) (c)

Figure 3. An illustration of the Discrete Radon Transform (DRT) and its cyclic Ghosts for an image of Lena. (a) shows the DRT space of the image of
Lena and its one-to-one nature. (b) shows missing projections (black rows in DRT space) and their effect on the reconstructed image. (c) shows the result of
deconvolving the Ghosts or “De-Ghosting” an image with Ghost artefacts in order to restore the image when a redundant image area is present.

Figure 4. An example of a Ghost represented as an image. This Ghost is
invisible at 24 rational angle projections and may be superimposed on an
image without changing the projections of the image for these 24 angles.

Figure 5. An example of a Mojette Transform for a discrete image of size 4×4
using the three projections [1, 1], [1,−1] and [1,−2]. The bold lines within
the right-hand grid shows a possible reconstruction path using a corner-based
reconstruction method [26].

This is now known as the Katz criterion. It is a statement
that the information contained in the projection set needs to
be one-to-one with the image data. When the criterion is not
met, discrete Ghosts superimpose on the image because of the
ambiguity in the projections [12]. These Ghosts look similar
to the image in Fig. 4.

Normand et al. [27] extended the Katz criteria to arbitrary
convex regions using mathematical morphology. They proved
that a set of rational angle projections can only be reconstructed
unambiguously if and only if the largest possible Ghost is larger
than the convex region being reconstructed, so that there is
no ghost present in the region due to the projection set. This
less stringent criteria for the MT allows one to reconstruct
images from a highly asymmetric set of projections [28].
These projections have a limited coverage in terms of the
half-plane, i.e. the interval [0, π), but are sufficient for an exact
reconstruction in terms of the Katz criterion (4). A number of
schemes have been proposed for these types of MT projections,
including a Conjugate Gradient method [29] and a Geometric
Graph approach [26], but the former is not suitably convergent
and the latter is very sensitive to noise. Sec. V will present
a fast alternative method based on the slices of the DFT and
their Ghosts.

Highly asymmetric projection sets also occur in conventional
limited angle tomography. Boyd and Little [30] presented a solu-
tion to limited angle tomography by reducing Ghosts through
the fusion of multi-modal data to improve Fourier coverage.
Techniques that minimise the L1-norm are a common approach
to reduce Ghost artefacts in reconstructions [31–34]. Vetterli et
al. [35] showed that N spikes can be recovered exactly from
2N + 1 consecutive Fourier samples by solving a system of
equations. Work by Kuba [36] inspired many others (for a
recent example see [37]) to develop the theory of “switching
components”. They considered the problem of uniquely recon-
structing all entries in a matrix from its directed sums, based
initially along the matrix rows and columns. These switching
components are structures that prohibit unique inversion. They
are equivalent to the Ghosts discussed here.

In recent work, Candès et al. [38] showed that an N ×N
image can be recovered exactly using convex optimisation of
a very small number of projections. However, their method
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suffers from high computationally complexity and is still an
active area of research [39]. Herman and Davidi [40] discussed
the Candès et al. [38] result using Ghosts and showed that
Ghosts artefacts may still remain invisible to small number of
projections when using their method. Nevertheless, their work
paves the way in using Ghosts for analysing the sensitivity
of reconstruction algorithms. Inspired by their work, the next
section constructs a cyclic theory of Ghosts for the Discrete
FST.

III. CYCLIC GHOSTS

In this section, it is shown that Ghosts of the Discrete FST
have exact cyclic forms known as m-Circulant matrices (or
circulants).

Definition 1 (m-Circulant1 [41]). An m-Circulant is an N×N
matrix containing a unique row f(j) with j = 0, . . . , N − 1

replicated on each row, but where each row is cyclically shifted
(modN) by an additional m elements to the right.

m-Circulants represent the slices of the Discrete FST
via its Fourier “diagonalisation” property. A 2-Circulant is
diagonalised by the DFT as illustrated in (5).

a0 a1 a2 a3 a4
a3 a4 a0 a1 a2
a1 a2 a3 a4 a0

a4 a0 a1 a2 a3
a2 a3 a4 a0 a1

 (i)DFT⇐⇒


λ0

λ1

λ2

λ3

λ4

 (5)

The diagonalisation is represented by monomial matrices M =

PΛ, where Λ is an N ×N diagonal matrix and P is an N ×N
permutation matrix with N non-zero elements representing a
discrete line at slope m (modN) [41]. Hence, the lines of slope
1 given in part (b) of Fig. 2 is a 1-Circulant. The lines of slope
2 (as in Fig. 2(c)) will be a 2-Circulant and so on.

Every projection can then be represented by an m-
Circulant and its 2D DFT represents a slice in discrete Fourier
space. Equivalently, since the 1D DFT of the unique circulant
row are the diagonal values [41], the 1D DFT of the (1D)
projections are the slice values, so that only a computation
complexity of O(N log2N) is required to compute each slice.
Superimposing a circulant in image space places a slice of
corresponding slope in DFT space. The tiling of the diagonals
is the same for the lines formed by the vectors [−m, 1] and
[1,−ps], so a total of N + N/p diagonals is required for full
tiling of DFT space. The result is a sum of N+N/p circulants in
image space to recover the image. This is known as Circulant
Back-Projection (CBP) [42] and is illustrated in Fig. 6.

Fill [4] showed that the Discrete FST can be constructed
using circulant matrices. Chandra and Svalbe [42] showed that
the construction can be extended to other DFT-like transforms,
such as the Number Theoretic Transform (NTT). The NTT
will be important in removing the cyclic Ghosts exactly (see
discussion at the end of this section).

The circulant matrices also allow one to naturally define and
understand Ghosts. In what follows, we restrict ourselves to
prime-sized image spaces, so that projections are acquired via
the vectors [1,m] and [0, 1] with a total of N + 1 projections
required for an exact reconstruction.

1Also referred to as a generalised circulant or g-circulant [41].

(a) 1 Circulant (b) 20 Circulants (c) 40 Circulants

(d) 60 Circulants (e) 80 Circulants (f) 100 Circulants

Figure 6. Illustration of the CBP of a 101 × 101 image of Lena using
different number of circulants. (a)-(f) show the effect of an increasing number
of slices placed into DFT space on the image. The artefacts on the partial
reconstructions are cyclic Ghosts.

Proposition 1 (Cyclic Ghosts). Each missing projection a′ at
[1,ma] in the DRT, which corresponds to the missing slice of
slope ma in the DFT, forms artefacts superimposed on the
reconstructed image in the form of a ma-Circulant. The unique
row of the circulant is a = −a′ and these artefacts are called
cyclic Ghosts.

Proof. When projections are missing, the CBP is incomplete
since there must be N+1 projections for an exact reconstruction.
Each projection is equivalent to a circulant in the reconstruction
process. Thus, the remaining missing contributions must be a
superposition of N number of circulants with shifts m`, where
` = 0, . . . ,N − 1 and N represents the number of missing
projections. The Ghosts are negative-valued since they are
missing contributions in the reconstruction. A schematic of the
circulant nature of Ghosts is shown in Fig. 7. J

Chandra et al. [13] showed that given N redundant or known
image rows, N cyclic Ghosts can be removed exactly by shifting
and subtracting redundant rows from the rows that contain
image data. Although the algorithm allowed exact recovery of
images with missing projections, it required the use of arbitrary
precision integers as values grew to the order of 1040 when
removing just 80-90 Ghosts for large images. The result was an
algorithm that had very high computational complexity and one
that gave no understanding of the cause of such large values.
In the next section, a deconvolution approach is constructed
which has a lower computational complexity and shows why
such large values arise.

IV. DE-GHOSTING

This section presents a deconvolution algorithm for removing
cyclic artefacts formed from N missing slices in the Discrete
FST. Given N redundant image rows or columns and a list of
unknown projection slopes m`, a Ghost deconvolution or De-
Ghost filter is constructed for an image size N . The filter is then
used to deconvolve the Ghost artefacts from the image rows.
Note that an open source implementation of all the algorithms
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Figure 7. The Q× P image (Lena) is of 100× 100 pixels embedded in a
image space N = 113 with the remaining pixels equal to zero. Assuming one
missing projection a′ at ma = 2, then the table shows the circulant artefacts
that become embedded over the reconstructed image values (including known
areas) where a = −a′.

constructed in this paper can be found in the Finite Transform
Library written by the authors [43].

Proposition 2 (Ghost Convolution). Ghosts formed from the
missing projections of the DRT are cyclic convolutions of these
projections in the geometry of the DFT.

Proof: According to the Discrete FST, each slice is a cyclic
smearing or back-projection of its corresponding projection
in image space [4, 42]. Within the geometry of the DFT,
convolutions can be represented as a sum of m-Circulants [41].
Thus, the Ghosts that arise due to empty (i.e. zero) projections
in the DRT result in an incomplete back-projected image, which
are a sum of the missing m-Circulants, and are convolutions
in image space.

Proposition 3 (Ghost Kernels). The Ghost convolution kernels
required for De-Ghosting are the vectors [1,mj ], which sum
to zero along its vector for each of the missing projections
j = 0, . . . ,N − 1.

Proof: The projections of Ghosts are zero-valued at their
corresponding m-values, so the projection vectors [1,mj ] must
also be Ghosts at their m-values in order that Ghosts annihilate
with shifted versions of themselves. The kernels apply to each
bin in the missing projection or Ghost row (using Prop. 2). An
example of a Ghost kernel is shown in Fig. 8(a)-(c).

Using Prop. 3, the De-Ghost filter is constructed in the
following way:

1) Create a 2D convolution kernel for each unknown slope
m` by placing a +1 at the image origin and −1 at (1,m`).

2) Convolve these kernels in 2D to obtain the De-Ghost fil-
ter.

The convolution of the kernels may be done either in 2D (in
Fourier or image space), or as a set of 1D convolutions on the
projections via the Projection Convolution Theorem (PCT) [6]

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. An example of the 1D convolution approach to constructing
2D Ghosts, where grey and black denote zero and minus greyscale values
respectively. (a) and (d) show the kernels [1, 1] and [1, 2] respectively. (c), (f)
and (i) show the DRT projections of the kernels (a) & (d) and their convolution
respectively.

(see Fig. 8). The advantage of the latter is efficiency, especially
when the number of known projections µ� N .

A. Projection Convolution Theorem

The PCT states that a 2D convolution is equivalent to the 1D
convolution of each projection or slice in Fourier space. Thus,
the 2D Ghost convolution can be computed as a series of 1D
convolutions on the known projections. For Ghost convolution,
when the number of Ghosts N is close to N , DRT space is
sparse and the 2D convolution is computed over a small number
of 1D signals.

The PCT can be interpreted as a consequence of the Discrete
FST. Since the slices tile DFT space exactly and are the DFT of
the projections, cyclically convolving the slices of two objects
is equivalent to cyclically convolving the objects themselves.
Thus, in order to utilise the PCT, one needs to know the
projections of the two objects. In this case, the projections of
the Ghost kernels are particularly convenient, which makes a
PCT approach very efficient.

Proposition 4 (Kernel Projections). The projections of the 2D
convolution kernel [1,m`], with a positive term at the origin
and a negative term at the coordinate (1,m`), will have the
positive term at the zeroth translate and the negative term at
translate tj as

tj =
(
m` −mj

)
(modN) (6)

for each projection mj with j = 0, . . . , N−1 and ` = 0, . . . ,N −
1. For the j = N projection, negative term is always at tj = 1.
Note that negative values −x modulo N are equivalent to the
value N − x (modN).
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(a) (b)

Figure 9. A schematic of the 1D Ghost convolution operators (a) for N = 23.
Each row represents the unique projection of a Ghost convolution kernel. (b)
shows their eigenvalues in (centred) discrete Fourier space.

Proof. The projection m` will be zero by definition with all
other projections being non-zero. For projections with mj < m`,
the negative term will appear in the translates t > 0 (modN)

because the initial vector [1,mj ] for t = 0 will not sample the
point (1,m`), since slope of the line is smaller than m`. The
difference of slope (m` −mj) defines the translate where the
point is eventually sampled. For projections with mj > m`,
the negative term will appear in the translates t < 0 (modN),
i.e. N − t (modN), because the initial vector [1,mj ] will not
sample the point (1,m`) until the vector wraps around the
image, since the slope of the line is more than m`. Hence, the
difference of slope (m` −mj) will be negative and defines the
translate where the point is eventually sampled. J

Corollary 1 (Kernel Operators). The projections of the kernels
[1,m`] only have N distinct combinations of positive and
negative values.

Proof. This follows from Prop. 4 and the fact that the system
is constructed within a cyclic geometry, i.e. because of the
wrapping of the values since there are only N residue classes.

J

An example of the unique kernel projections (following
Cor. 1) and their eigenvalues are shown in parts (a) and (b)
of Fig. 9 respectively. These eigenvalues can be precomputed,
since they depend purely on the set of slopes of the missing
projections as given by Prop. 4. The form of the DFT
eigenvalues for N = 479 is provided as supplementary material.

Therefore, the 1D Ghost convolution approach may be used
to generate a 2D Ghost as follows (see also Fig. 8):

1) Pre-compute the Ghost operator eigenvalues via the DFT
for a given N . The results can be used as a hash table
to pick out the relevant operator based on the projection
being convolved.

2) Convolve a discrete delta function with each of the
kernels [1,m`] by selecting the correct eigenvalues for
each operator using the eigenvalues hash table (as given
by previous step) via Eq. (6) and multiplying these
operators with the eigenvalues of the delta function.

3) Repeat the 1D Ghost convolutions for all known projec-
tions mj .

4) Compute the inverse DFT of the result from 3 to obtain
the Ghost structure in image space.

The computational complexity is O(NN log2N) for pre-
computing the eigenvalues, O(µN log2N) for the 1D DFTs
of the known projections and O(µNN) for computing the
convolutions. When µ� N , the algorithm has a computational
complexity of O(n log2 n) (where n = N2). However, the con-
volution is susceptible to round-off errors and loss of precision
for large N when utilising the DFT for the convolutions. This
problem, which manifested as numerical overflow, was also
encountered by Chandra et al. [13] with their method. This
numerical growth can be easily seen as a direct consequence
of the convolutions of the eigenvalues in Fig. 9. The solution
is to use the NTT and the Number-Theoretic Radon Transform
(NRT) of Chandra and Svalbe [42].

B. Number Theoretic Convolution

The NTT allows one to compute convolutions using only
integers because the unit circle is replaced with the digital
“circle”

αM−1 ≡ 1 (modM), (7)

so that αM−1− 1 is a multiple of M , N is a multiple of M − 1

and α,M ∈ N0 [44]. The successive powers {1, . . . ,M − 1} of
α generates a unique set of integers in some order modulo M .
Such a number α is called the primitive root. The primitive
root(s) α in these cases have to be found by trial and error and
can be computed by dividing M − 1 by the prime factors pj
of M − 1, such that α(M−1)/pj 6≡ 1 (modM), where the trial
value of α is prime.

For a prime-length N , the NTT can be computed by first
selecting the modulus M as M = k · N + 1. This allows the
power of α in Eq. (7) to be a multiple of N . For example, the
modulus for the prime-length N = 101 is 607 with k = 6. Then
Rader’s [45] algorithm can be used to compute its fast form.
Integer coefficients allow computations to be done without
round-off error or numerical overflow, since the results are
congruent modulo M [46].

Chandra and Svalbe [42] showed that the discrete FST still
holds within the 2D NTT when placing Number Theoretic
slices, i.e. the NTTs of the projections, into 2D NTT space.
This allows one to replace the DFT in all computations,
including those within the Ghost convolutions, with the NTT.
The resulting NRT was constructed specifically to remedy the
loss of precision when forming cyclic Ghosts. Chandra and
Svalbe [42] also showed that the implementation of the NTT
is faster than the DFT because of its integer-only operations.
Consequently, the Ghost convolution method is impervious to
numerical overflow and faster than DFT approaches.

Ghosts in the NRT have another important property in that
any physical or perceivable structures in the Ghosts are difficult
to discern. The Ghosts in this space have the value 0 (modM)

in the direction of the missing projections. This makes the NRT
Ghosts well suited for encoding and encryption. An example
of Ghosts within the NRT can be seen in Fig. 10(b). Once
the Ghost is constructed/convolved, it can be used to remove
the artefacts formed by the missing slices for which it was
constructed. This process of De-Ghosting is described in the
next section.



7

(a) (b)

Figure 10. Examples of Ghosts in the NRT. (a) shows a Ghost with N = 4 at
m = 1, 2, 3, 4 (mod 53), where N = 13. (b) shows a Ghost with N = 80
at m = 1, . . . , 80 (mod 607), where N = 101.

Figure 11. A De-Ghost example for a Q× P image (in grey), where a row
of the De-Ghost filter (in red) is aligned to an image row Ĩ(3, 0) (with the
remaining filter rows in redundant space) and the row-wise 1D convolution of
the filter (with the Ghosted image rows) recovers the image row Ĩ(3, 0). The
result is back-substituted to create a redundant row and the process repeated,
as in (II), (III) and (IV), to recover the image.

C. Ghost Deconvolution

The Ghost constructed in the previous section may be applied
as an exact deconvolution mask/filter to recover the missing
slices of the Discrete FST. The filter is aligned to an image
row to be De-Ghosted and the deconvolution computed in one
of two ways.

A simple but inefficient deconvolution method is to zero-pad
the sub-image that contains the image row to be recovered,
as well as the required N redundant rows, within the N ×N
space and compute the 2D convolution with the filter. A more
efficient approach is to individually convolve each row of the
filter with the corresponding row of the image as shown in
Fig. 11. The result of each 1D convolution would then need to
be summed to the image row being recovered. For example, the
sum of convolutions in Fig. 11(I) is effectively a sub-circulant
expression given as

A · Ĩ(3, 0)T +B · Ĩ(4, 0)T +C · Ĩ(5, 0)T +D · Ĩ(6, 0)T = I(3, 0)T ,

(8)
where Ĩ denotes the Ghosted image, I denotes the desired
De-Ghosted sub-image and the matrices A,B,C and D are

circulants defined by the rows A,B,C and D of the filter in
Fig. 11. These circulants represent the 1D convolutions of the
rows of the filter. The resultant image row is back-substituted
and the filter translated up or down to recover the next row. In
this case, row I(3, 0) is back-substituted into Ĩ(3, 0) in order
to make it a redundant row and the filter is translated upwards
to the next row and Eq. (8) is repeated for (II). The process is
repeated for all image rows until all the Ghosts are removed.

In the 1D convolution method, the m-values of the
Ghosts need to be −m` (i.e. N −m` rather than m`) when
convolving the Ghosts to undo the right shift of the m-
Circulants. A total of N + 1 rows need to be convolved,
resulting in a computational complexity of O(QNN). When
µ = min(P,Q) + 1 and µ � N , the algorithm has a
computational complexity of O(n log2 n) (where n = N2). A
visual interpretation to constructing Ghosts, that unifies the
Ghost recovery algorithm of Chandra et al. [13], Latin squares
approach of Chandra and Svalbe [14] and the 2D convolution
approach of this paper, can be made using n-gons (see the
thesis of Chandra [47]).

More work has to be done with both methods when the
projections or slices contain noise or inconsistencies as these
also become convolved during the De-Ghost process. The
convolution approach requires a very good estimation of noise
prior to De-Ghosting, so that the estimates may be used to
deconvolve their effects on the results. Future work includes
generalising the approach to arbitrary missing discrete Fourier
coefficients. Recent work by Svalbe et al. [48–50] discussed
the minimal extent of cyclic Ghosts, which may prove useful
in this endeavour. In the next section, the De-Ghost method
is applied to the discrete inverse problem of determining a
reconstruction from a set of highly asymmetric rational angle
projections.

V. APPLICATION: DISCRETE RECONSTRUCTION

Chandra et al. [13] utilised their Ghost removal technique
to exactly reconstruct an image from rational angle (noise-
free) discrete 1D projections of the MT. The projections
sets in their work required covering the half-plane, i.e. the
interval [0, π). In this section, the De-Ghost method will
be applied to reconstructing from a set of rational angle
projections with arbitrary coverage of the half-plane, such
as those within a quadrant or the interval [0, π/2), provided
there are min(P,Q) + 1 projections for a Q× P image. Both
sets require that the projections satisfy the Katz criterion (4)
for exact reconstruction.

In the De-Ghost reconstruction algorithm, a Q× P image is
zero padded into an N ×N space, where N > max(P,Q). A
total of min(P,Q) + 1 projections are required to ensure that
the number of redundant image rows is equal to the number of
missing slices N , since there will be N + 1 slices within DFT
space. An efficient new method for generating min(P,Q) + 1

highly asymmetric rational angles is presented in the Appendix.
Assuming that min(P,Q) + 1 of this type of projections
have been acquired, the remaining parts of this section will
demonstrate the performance of the De-Ghost algorithm in
reconstructing these rational angle projections exactly, where
a large number of Ghosts are present.
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(a) (b)

(c) (d)

(e) (f)

Figure 12. The results of the De-Ghost method applied to discrete reconstruc-
tion. A total of 101 asymmetric rational angle projections of a 100×100 image
of Lena was exactly reconstructed within a DFT space of size 257× 257. (a)
shows the resulting DRT space. (b) shows the resulting Ghosts when (a) is
reconstructed. (c) shows a cropped version of (b) focussing on the embedded
image. (d) and (e) show the Ghost eigenvalues and the Ghost that was used
to recover the reconstructed image exactly (shown in (f)).

Consider a 100× 100 image of Lena and 101 rational angle
projections similar to the geometry of Fig. 14(a). Also let
N = 257 for performance purposes, so that N − 1 is a power
of two. Thus, there will be 156 Ghosts to remove and also 156
redundant rows in the image, so that the De-Ghost method can
be applied.

Fig. 12(a) shows the DRT space resulting from 101 rational
projections acquired across the quadrant and mapped via Eq. (9).
Fig. 12(b) and (c) show the resulting Ghosts superimposed
on the reconstruction due to the missing projections in (a).
Fig. 12(d) shows the NTT Ghost eigenvalues that are used
to construct the deconvolution Ghost in Fig. 12(e). Fig. 12(f)
shows the final result of the De-Ghosting, which is an exact
reconstruction. The computation time was approximately 500
milliseconds on a single-core 1.6 GHz AMD Turion™ 64-bit
Laptop. This algorithm performs several orders of magnitude

faster than the method of Chandra et al. [13], whose compu-
tations took in the order of hours to complete on the same
machine.

Further work needs to be done to handle inconsistencies
within projections while utilising De-Ghosting. Also, a study of
the small variations within the rational angle multiplicity may
be critical in understanding whether some projections are more
“important” than others. The information in an image is known
to be distributed non-uniformly amongst its discrete projections.
The variance for a DRT projection m, with equivalent MT
projection [b, a], scales inversely as (a2 + b2).

CONCLUSION

A theory for missing slices of the Discrete FST was
constructed that allowed description of Ghost artefacts in the 2D
DFT. The theory was used to construct new Ghost convolution
and deconvolution methods, having a computational complexity
of O(n log2 n) with n = N2, which can be utilised in recovering
missing slices in the DFT (see Props 1 to 4). The methods
required the use of the NTT in order to avoid numerical
overflow and loss of precision problems. This De-Ghost method
was then used to solve the discrete inverse problem of
reconstructing exactly from highly asymmetric rational angle
projections (see Figs 12 and 14).
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APPENDIX
GHOST ANGLE SETS

Chandra et al. [51] showed that any MT projection, acquired
along a rational vector [b, a], can be directly and efficiently
mapped to a prime-sized DFT space exactly as

m ≡ ab−1 (modN), (9)

where a, b ∈ Z with gcd(a, b) = 1 and b−1 is the multiplicative
inverse of b. The mapping (9) results from solving mb ≡ a

(modN). Each Mojette bin or translate tM is then placed into
a DRT translate tR as

tR =

{
b−1 tM (modN), if gcd(a,N) > 1

a−1 tM (modN), if gcd(b,N) > 1
. (10)

An efficient way to generate the values a and b is to minimise
the L1-norm of the rational vectors [b, a]. This can be computed
as

b3 =

⌊
b1 + a1 +N

a2

⌋
b2 − b1, a3 =

⌊
b1 + a1 +N

a2

⌋
a2 − a1,

(11)
where b · c is the floor (round-down) operator, beginning the
computation with [b1, a1] = [0, 1] and [b2, a2] = [1, N ] until
[b3, a3] = [1, 1] [51]. Positive [b, a] values represent the first
octant of the half-plane with the other octants produced by
[−b, a], [a, b] and [a,−b] vectors [16]. The resulting m values
from these rational vectors can be compared with values
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Figure 13. The multiplicity of the mapping between the finite angle and
rational angle sets for N = 256, i.e. for the dyadic case. Because of the
dyadic size, the range of values are 0 6 m < N and s′ = N + s, where
0 6 s < N/2.

previously computed to obtain the desired DFT coverage.
Eq. (11) produces rational angles that result in more compact
projections in terms of the number of bins B, since

B = |a|(Q− 1) + |b|(P − 1) + 1. (12)

Minimising L1-norm of the rational angles allows one to
acquire N + 1 projections of certain coverage with reduced
redundancy. The De-Ghost methods discussed in this work
does not depend on how the rational angles are generated or
selected.

This method can be extended to cover a fraction of the
half-plane by limiting the number of octants used within the
projection set. One then can obtain a set that sparsely covers
the half-plane, but one that can still completely cover DFT
space. This is because there exists a multiplicity of possible
rational vectors for each finite angle [1,m] across the half-plane.
The multiplicity is a consequence of the one-to-many nature
of the m rational mapping in Eq. (9). A total of min(P,Q) + 1

projections can then be selected from this set that satisfies
Katz criterion (4), while still being highly asymmetric. This
multiplicity is shown as graphs in Fig. 13 for a single quadrant
and the half plane.

The multiplicity of the m rational mapping appears to be
relatively “flat” in a discrete sense, but with small variations.
Graph 13 is reminiscent of curves obtained by Svalbe and
Kingston [52] when observing the “unevenness” of the rational
vectors from uniform coverage. The unevenness of the rational
vectors is related to the distribution of prime numbers and
the Riemann hypothesis [53]. Once min(P,Q) + 1 projections
are chosen, the theory of cyclic Ghosts can be applied to
reconstruct these projections exactly. It effectively reduces the
number of projections required to min(P,Q) + 1, rather than a
total N +1 in the traditional case. Examples of each projection
set are given in Fig. 14.

REFERENCES
[1] A. Grigoryan, “New algorithms for calculating the discrete Fourier

transforms,” J. Vichislit. Matem. i Mat. Fiziki, vol. 25, no. 9, pp. 1407–

(a) (b)

Figure 14. Examples of rational projection sets when utilising Ghosts in
discrete reconstruction. (a) shows a set limited to a quadrant and (b) shows a
set using the half-plane. The sets apply to a 11× 11 image embedded into a
23× 23 space.

1412, 1986.
[2] E. D. Bolker, “The Finite Radon Transform,” Contemporary Mathematics

(American Mathematical Society), vol. 63, pp. 27–49, 1987.
[3] I. Gertner, “A new efficient algorithm to compute the two-dimensional

discrete Fourier transform,” Acoustics, Speech and Signal Processing,
IEEE Transactions on, vol. 36, no. 7, pp. 1036–1050, Jul 1988.

[4] J. A. Fill, “The Radon Transform on Zn,” SIAM Journal on Discrete
Mathematics, vol. 2, no. 2, pp. 262–283, 1989.

[5] G. T. Herman and A. Kuba, Discrete tomography: foundations, algorithms,
and applications. Birkhäuser, 1999.

[6] F. Matúš and J. Flusser, “Image Representation via a Finite Radon Trans-
form,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 15, no. 10, pp. 996–1006, 1993.

[7] A. Kingston and I. Svalbe, “Generalised finite Radon transform for NxN
images,” Image and Vision Computing, vol. 25, no. 10, pp. 1620 – 1630,
2007, Discrete Geometry for Computer Imagery 2005.

[8] T. Hsung, D. Lun, and W.-C. Siu, “The discrete periodic Radon transform,”
Signal Processing, IEEE Transactions on, vol. 44, no. 10, pp. 2651–2657,
1996.

[9] D. Lun, T. Hsung, and T. Shen, “Orthogonal discrete periodic Radon
transform. Part I: theory and realization,” Signal Processing, vol. 83,
no. 5, pp. 941–955, 2003.

[10] ——, “Orthogonal discrete periodic Radon transform. Part II: applica-
tions,” Signal Processing, vol. 83, no. 5, pp. 957–971, 2003.

[11] A. Kingston, “Orthogonal discrete Radon transform over pn×pn images,”
Signal Processing, vol. 86, no. 8, pp. 2040 – 2050, 2006, special Section:
Advances in Signal Processing-assisted Cross-layer Designs.

[12] M. Katz, Questions of Uniqueness and Resolution in Reconstruction from
Projections, ser. Lecture Notes in Biomathematics. Springer-Verlag,
1977.

[13] S. S. Chandra, I. Svalbe, and J.-P. Guédon, “An exact, non-iterative
Mojette inversion technique utilising ghosts,” in Lecture Notes in
Computer Science (LNCS). Springer Berlin / Heidelberg, 2008, vol.
4992, pp. 401–412.

[14] S. S. Chandra and I. Svalbe, “A method for removing cyclic artefacts in
discrete tomography using Latin squares,” 19th International Conference
on Pattern Recognition, pp. 1–4, Dec. 2008.

[15] N. Normand, I. D. Svalbe, B. Parrein, and A. M. Kingston, “Erasure cod-
ing with the finite Radon transform,” in IEEE Wireless Communications
& Networking Conference, Sydney, Apr. 2010.

[16] I. Svalbe, “Exact, scaled image rotation using the Finite Radon Transform,”
Pattern Recognition Letters, vol. 32, no. 9, pp. 1415–1420, 2011.

[17] R. N. Bracewell and J. A. Roberts, “Aerial Smoothing in Radio
Astronomy,” Australian Journal of Physics, vol. 7, pp. 615–640, Dec.
1954.

[18] T. Cornwell, “Image Restoration and the Clean Technique,” in Synthesis
Mapping, A. R. Thompson & L. R. D’Addario, Ed., 1982, p. 9.

[19] A. K. Louis, “Ghosts in tomography - the null space of the Radon
transform,” Mathematical Methods in the Applied Sciences, vol. 3, pp.
1–10, 1981.

[20] B. F. Logan, “The uncertainty principle in reconstructing functions from
projections,” Duke Mathematical Journal, vol. 42, no. 4, pp. 661–706,
1975.

[21] G. N. Ramachandran and A. V. Lakshminarayanan, “Three-dimensional
Reconstruction from Radiographs and Electron Micrographs: Application
of Convolutions instead of Fourier Transforms,” Proc. of the Nat. Acad.



10

of Sciences, vol. 68, no. 9, pp. 2236–2240, 1971.
[22] L. Shepp and B. Logan, “The Fourier reconstruction of a head section,”

Nuclear Science, IEEE Transactions on, vol. 21, pp. 21–43, 1974.
[23] A. C. Kak and M. Slaney, Principles of Computerized Tomographic

Imaging. Society of Industrial and Applied Mathematics, 2001.
[24] A. K. Louis, “Nonuniqueness in inverse Radon problems: The frequency

distribution of the ghosts,” Mathematische Zeitschrift, vol. 185, no. 3,
pp. 429–440, 1984.

[25] J.-P. Guédon, D. Barba, and N. Burger, “Psychovisual image coding via
an exact discrete Radon transform,” Proc. of the SPIE - The International
Society for Optical Engineering, vol. 2501, pp. 562–572, 1995.

[26] N. Normand, A. Kingston, and P. Évenou, “A geometry driven reconstruc-
tion algorithm for the Mojette transform,” in Lecture Notes in Computer
Science (LNCS). Springer Berlin / Heidelberg, 2006, vol. 4245, pp.
122–133.

[27] N. Normand, J.-P. Guédon, O. Philippe, and D. Barba, “Controlled
redundancy for image coding and high-speed transmission,” Proc. of the
SPIE - The International Society for Optical Engineering, vol. 2727, pp.
1070–1081, 1996.

[28] J.-P. Guédon, N. Normand, A. Kingston, B. Parrein, M. Servières,
P. Évenou, I. Svalbe, F. Autrusseau, T. Hamon, Y. Bizais, D. Coeurjolly,
F. Boulos, and E. Grail, The Mojette Transform: Theory and Applications.
ISTE-Wiley, 2009.

[29] M. Servières, J. Idier, N. Normand, and J.-P. Guédon, “Conjugate gradient
Mojette reconstruction,” Proc. of the SPIE - The International Society
for Optical Engineering, vol. 5747, no. 1, pp. 2067–2074, 2005.

[30] J. Boyd and J. Little, “Complementary data fusion for limited-angle tomo-
graphy,” Proc. 1994 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 288–294, 1994.

[31] D. L. Donoho and P. B. Stark, “Uncertainty principles and signal recovery,”
SIAM Journal on Applied Mathematics, vol. 49, p. 906, 1989.

[32] D. L. Donoho and B. F. Logan, “Signal recovery and the large sieve,”
SIAM Journal on Applied Mathematics, vol. 52, p. 577, 1992.

[33] D. L. Donoho, “For most large underdetermined systems of linear
equations the minimal `1-norm solution is also the sparsest solution,”
Communications on Pure and Applied Mathematics, vol. 59, no. 6, pp.
797–829, 2006.

[34] J. Wright and Y. Ma, “Dense Error Correction Via `1-Minimization,”
Information Theory, IEEE Transactions on, vol. 56, no. 7, pp. 3540
–3560, july 2010.

[35] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate
of innovation,” IEEE Transactions on Signal Processing, vol. 50, no. 6,
pp. 1417–1428, Jun. 2002.

[36] A. Kuba, “The reconstruction of two-directionally connected binary
patterns from their two orthogonal projections,” Computer vision,
graphics, and image processing, vol. 27, no. 3, pp. 249–265, 1984.

[37] S. Brunetti, P. Dulio, and C. Peri, “Characterization of -1, 0, +1 valued
functions in discrete tomography under sets of 4 directions,” in Lecture
Notes in Computer Science (LNCS), vol. 6607, 2011, pp. 394–405.

[38] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information,”
Information Theory, IEEE Transactions on, vol. 52, no. 2, pp. 489–509,
February 2006.

[39] A. Ganesh, Z. Lin, J. Wright, L. Wu, M. Chen, and Y. Ma, “Fast
algorithms for recovering a corrupted low-rank matrix,” in Comp. Adv.
in Multi-Sensor Adaptive Processing (CAMSAP), IEEE International
Workshop on, 2009, pp. 213 –216.

[40] G. Herman and R. Davidi, “Image reconstruction form a small number
of projections,” Inverse Problems, vol. 24, p. 17, 2008.

[41] P. J. Davis, Circulant Matrices. John Wiley & Sons, 1979.
[42] S. S. Chandra and I. D. Svalbe, “Exact image representation via a Number-

Theoretic Radon Transform,” IET Computer Vision, 2012, accepted.
[43] S. S. Chandra, “The Finite Transform Library (FTL),” Monash

University, Australia, Available at SourceForge.net, C/C++ Library
(Open Source under GPL v3) 1.0, 2009. [Online]. Available:
http://finitetransform.sourceforge.net

[44] J. M. Pollard, “The Fast Fourier Transform in a Finite Field,” Mathematics
of Computation, vol. 25, no. 114, pp. 365–374, 1971.

[45] C. M. Rader, “Discrete Fourier transforms when the number of data
samples is prime,” Proceedings of the IEEE, vol. 56, no. 6, pp. 1107–1108,
June 1968.

[46] H. J. Nussbaumer, “Overflow detection in the computation of convolutions
by some number theoretic transforms,” Acoustics, Speech and Signal
Processing, IEEE Transactions on, vol. 26, no. 1, pp. 108–109, Feb
1978.

[47] S. S. Chandra, “Circulant Theory of the Radon Transform,” Ph.D.
dissertation, School of Physics, Monash University, 2010, Online Monash

ARROW Repository.
[48] I. Svalbe, N. Normand, N. Nazareth, and S. S. Chandra, “On constructing

minimal ghosts,” Proceedings of the Digital Image Computing Techniques
and Applications (DICTA), pp. 276 – 281, 2010.

[49] I. Svalbe and N. Normand, “Properties of minimal ghosts,” in Lecture
Notes in Computer Science (LNCS). Springer Berlin / Heidelberg, 2010,
vol. 6607, pp. 417–428.

[50] I. Svalbe and S. S. Chandra, “Growth of discrete projection ghosts
created by iteration,” in Lecture Notes in Computer Science (LNCS),
I. Debled-Rennesson, E. Domenjoud, B. Kerautret, and P. Even, Eds.
Springer Berlin / Heidelberg, 2011, vol. 6607, pp. 406–416.

[51] S. S. Chandra, N. Normand, A. Kingston, J.-P. Guédon, and I. Svalbe,
“Fast Mojette Transform for Discrete Tomography,” Journal of Math-
ematical Imaging and Vision, 2010, submitted December (in Review),
Available on arXiv:1006.1965v1 [physics.med-ph].

[52] I. Svalbe and A. Kingston, “On correcting the unevenness of angle
distributions arising from integer ratios lying in restricted portions of
the Farey plane,” Combinatorial Image Analysis. 10th International
Workshop, IWCIA 2004. Proceedings (LNCS), vol. 3322, pp. 110–121,
2004.

[53] J. Franel, “Les suites de farey et le problème des nombres premiers,”
Göttinger Nachrichten, pp. 191–201, 1924.

Shekhar S. Chandra was born in Suva, Fiji Islands
in 1980. He received a B.Sc. in computer science at
the University of the South Pacific (Fiji), followed
by a B.Sc. (Hons) in physics at Monash University
(Australia) and a Ph.D in physics at Monash Univer-
sity (Australia) in 2010.

He is currently a post-doctoral fellow at the Aus-
tralian e-Health Research Centre, CSIRO, where he is
undertaking research in medical imaging. His current
research interests include image/signal processing,
number theory, biomedical imaging and discrete

tomography.

Imants D. Svalbe was born in Ballarat, Australia, in
1952. He received the B.Sc. (Hons) degree in physics
in 1974 and the Ph.D. degree in nuclear physics,
in 1979, both from the University of Melbourne,
Australia.

He is currently a Senior Lecturer in the School of
Physics at the Clayton Campus of Monash University,
Australia, where he teaches physics and medical ima-
ging to radiography students. His principal research
interests are focussed on discrete effects in digital
image processing. He has spent several periods as

an Invited Visiting Professor at the University of Nantes, and is currently an
Associate Editor for Pattern Recognition Letters.

Andrew M. Kingston was born in Brisbane, Aus-
tralia in 1978. He received a B.Sc. degree in 1999
and a B.Eng. (Hons.) degree in 2002 at Monash
University. He was awarded a Ph.D in physics at
Monash University in 2006.

He is currently a Research Fellow in the De-
partment of Applied Mathematics in the Research
School of Physics and Engineering at the Australian
National University. Prior to that he held a Post-
Doctoral position at the IRCCyN laboratory in Ecole
polytechnique de l’universite de Nantes. His research

interests are centered around computed tomography and the associated Radon
transform (both continuous and discrete forms).

http://finitetransform.sourceforge.net
http://arrow.monash.edu.au/hdl/1959.1/289983
http://arrow.monash.edu.au/hdl/1959.1/289983
http://arxiv.org/abs/1006.1965v1


11

Jeanpierre Guédon was born in Grosbreuil, France
in 1962. He received the M.S degree and Ph.D degree
from Ecole Centrale de Nantes and University of
Nantes in 1986 and 1990 respectively, working on
sampling in tomography with Yves Bizais. In 1991-
92, he was a post-doc at CDRH FDA Rockville MD,
USA with Kyle Myers and Bob Wagner. In 1994,
he was assistant professor at Polytech Nantes then
professor since 2002.

He developed the Mojette transform with several
colleagues since 1994. His fields of interest concerns

the theory around the Mojette transform and its numerous applications for
storing and transmissions and for medical imaging. He invented the Mojette
game in 2010.

Nicolas Normand was born in Nantes, France, in
1969. He received the Dipl.Ing. degree from INSA,
Rennes, in 1992, the M.S. degree from the University
of Nantes in 1993 and the Ph.D degree in computer
science from the University of Nantes in 1997.

He has been holding a permanent position (Maître
de Conférences) at the IRCCyN laboratory in Poly-
tech Nantes, formerly IRESTE, since 1997. In 2009,
he was awarded an International Fellowship grant
ARC LX0989907 from the Australian Research
Council and spent 12 months in the School of Physics,

Monash University, Melbourne. His research fields of interest are discrete
tomography, especially the Mojette transform and discrete Radon transform,
and discrete distances.


	Introduction
	Previous Work
	Cyclic Ghosts
	De-Ghosting
	Projection Convolution Theorem
	Number Theoretic Convolution
	Ghost Deconvolution

	Application: Discrete Reconstruction
	Appendix: Ghost Angle Sets
	Biographies
	Shekhar S. Chandra
	Imants D. Svalbe
	Andrew M. Kingston
	Jeanpierre Guédon
	Nicolas Normand


