535 research outputs found

    Evolved Stars in the Core of the Massive Globular Cluster NGC 2419

    Full text link
    We present an analysis of optical and ultraviolet Hubble Space Telescope photometry for evolved stars in the core of the distant massive globular cluster NGC 2419. We characterize the horizontal branch (HB) population in detail including corrections for incompleteness on the long blue tail. We present a method for removing (to first order) lifetime effects from the distribution of HB stars to facilitate more accurate measurements of helium abundance for clusters with blue HBs and to clarify the distribution of stars reaching the zero-age HB. The population ratio R = N_HB / N_RGB implies there may be slight helium enrichment among the EHB stars in the cluster, but that it is likely to be small (dY < 0.05). An examination of the upper main sequence does not reveal any sign of multiple populations. Through comparisons of optical CMDs, we present evidence that the EHB clump in NGC 2419 contains the end of the canonical horizontal branch, and that the boundary between the normal HB stars and blue hook stars shows up as a change in the density of stars in the CMD. This corresponds to a spectroscopically-verified gap in NGC 2808 and an "edge" in omega Cen. The more clearly visible HB gap at V = 23.5 appears to be too bright.(Abridged)Comment: 27 pages, 25 figures (some bitmapped), uses emulateapj, accepted to Astronomical Journa

    Bright Variable Stars in NGC 6819 - An Open Cluster in the Kepler Field

    Full text link
    We describe a variability study of the moderately old open cluster NGC 6819. We have detected 4 new detached eclipsing binaries near the cluster turnoff (one of which may be in a triple system). Several of these systems should be able to provide mass and radius information, and can therefore constrain the age of the cluster. We have also newly detected one possible detached binary member about 3.5 magnitudes below the turnoff. One EW-type binary (probably not a cluster member) shows unusually strong night-to-night light curve variations in sets of observations separated by 8 years. According to the best current information, the three brightest variables we detected (2 of them new) are cluster members, making them blue stragglers. One is a delta Scu pulsating variable, one is a close but detached binary, and the third contains a detached short period binary that shows total eclipses. In each case, however, there is evidence hinting that the system may have been produced through the interaction of more than two stars.Comment: 33 pages, 15 figures, accepted to A

    An AMR Study of the Common Envelope Phase of Binary Evolution

    Full text link
    The hydrodynamic evolution of the common envelope phase of a low mass binary composed of a 1.05 Msun red giant and a 0.6 Msun companion has been followed for five orbits of the system using a high resolution method in three spatial dimensions. During the rapid inspiral phase, the interaction of the companion with the red giant's extended atmosphere causes about 25% of the common envelope to be ejected from the system, with mass continuing to be lost at the end of the simulation at a rate ~ 2 Msun/yr. In the process the resulting loss of angular momentum and energy reduces the orbital separation by a factor of seven. After this inspiral phase the eccentricity of the orbit rapidly decreases with time. The gravitational drag dominates hydrodynamic drag at all times in the evolution, and the commonly-used Bondi-Hoyle-Lyttleton prescription for estimating the accretion rate onto the companion significantly overestimates the true rate. On scales comparable to the orbital separation, the gas flow in the orbital plane in the vicinity of the two cores is subsonic with the gas nearly corotating with the red giant core and circulating about the red giant companion. On larger scales, 90% of the outflow is contained within 30 degrees of the orbital plane, and the spiral shocks in this material leave an imprint on the density and velocity structure. Of the energy released by the inspiral of the cores, only about 25% goes toward ejection of the envelope.Comment: 18 pages, 11 figures, submitted to ApJ; accepted versio

    Photometry of the Globular Cluster NGC 5466: Red Giants and Blue Stragglers

    Full text link
    We present wide-field BVI photometry for about 11,500 stars in the low-metallicity cluster NGC 5466. We have detected the red giant branch bump for the first time, although it is at least 0.2 mag fainter than expected relative to the turnoff. The number of red giants (relative to main sequence turnoff stars) is in excellent agreement with stellar models from the Yonsei-Yale and Teramo groups, and slightly high compared to Victoria-Regina models. This adds to evidence that an abnormally large ratio of red giant to main-sequence stars is not correlated with cluster metallicity. We discuss theoretical predictions from different research groups and find that the inclusion or exclusion of helium diffusion and strong limit Coulomb interactions may be partly responsible. We also examine indicators of dynamical history: the mass function exponent and the blue straggler frequency. NGC 5466 has a very shallow mass function, consistent with large mass loss and recently-discovered tidal tails. The blue straggler sample is significantly more centrally concentrated than the HB or RGB stars. We see no evidence of an upturn in the blue straggler frequency at large distances from the center. Dynamical friction timescales indicate that the stragglers should be more concentrated if the cluster's present density structure has existed for most of its history. NGC 5466 also has an unusually low central density compared to clusters of similar luminosity. In spite of this, the specific frequency of blue stragglers that puts it right on the frequency -- cluster M_V relation observed for other clusters.Comment: 51 pages, 21 figures, 1 electronic table, accepted to Ap

    Close binary stars in the solar-age Galactic open cluster M67

    Get PDF
    We present multi-colour time-series CCD photometry of the solar-age galactic open cluster M67 (NGC 2682). About 3600 frames spread over 28 nights were obtained with the 1.5 m Russian-Turkish and 1.2 m Mercator telescopes. High-precision observations of the close binary stars AH Cnc, EV Cnc, ES Cnc, the δ\delta Scuti type systems EX Cnc and EW Cnc, and some long-period variables belonging to M67 are presented. Three full multi-colour light curves of the overcontact binary AH Cnc were obtained during three observing seasons. Likewise we gathered three light curves of EV Cnc, an EB-type binary, and two light curves of ES Cnc, a blue straggler binary. Parts of the light change of long-term variables S1024, S1040, S1045, S1063, S1242, and S1264 are obtained. Period variation analysis of AH Cnc, EV Cnc, and ES Cnc were done using all times of mid-eclipse available in the literature and those obtained in this study. In addition, we analyzed multi-colour light curves of the close binaries and also determined new frequencies for the δ\delta Scuti systems. The physical parameters of the close binary stars were determined with simultaneous solutions of multi-colour light and radial velocity curves. Finally we determined the distance of M67 as 857(33) pc via binary star parameters, which is consistent with an independent method from earlier studies.Comment: 12 pages, 9 Figures, 13 Table

    The Blue Hook Populations of Massive Globular Clusters

    Full text link
    We present new HST ultraviolet color-magnitude diagrams of 5 massive Galactic globular clusters: NGC 2419, NGC 6273, NGC 6715, NGC 6388, and NGC 6441. These observations were obtained to investigate the "blue hook" phenomenon previously observed in UV images of the globular clusters omega Cen and NGC 2808. Blue hook stars are a class of hot (approximately 35,000 K) subluminous horizontal branch stars that occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. By coupling new stellar evolution models to appropriate non-LTE synthetic spectra, we investigate various theoretical explanations for these stars. Specifically, we compare our photometry to canonical models at standard cluster abundances, canonical models with enhanced helium (consistent with cluster self-enrichment at early times), and flash-mixed models formed via a late helium-core flash on the white dwarf cooling curve. We find that flash-mixed models are required to explain the faint luminosity of the blue hook stars, although neither the canonical models nor the flash-mixed models can explain the range of color observed in such stars, especially those in the most metal-rich clusters. Aside from the variation in the color range, no clear trends emerge in the morphology of the blue hook population with respect to metallicity.Comment: Accepted for publication in The Astrophysical Journal. Latex, 14 pages, 1 B&W and 6 color figure

    Search for giant planets in M67 I. Overview

    Full text link
    Precise stellar radial velocities are used to search for massive (Jupiter masses or higher) exoplanets around the stars of the open cluster M67. We aim to obtain a census of massive exoplanets in a cluster of solar metallicity and age in order to study the dependence of planet formation on stellar mass and to compare in detail the chemical composition of stars with and without planets. This first work presents the sample and the observations, discusses the cluster characteristics and the radial velocity (RV) distribution of the stars, and individuates the most likely planetary host candidates. We observed a total of 88 main-sequence stars, subgiants, and giants all highly probable members of M67, using four telescopes and instrument combinations. We investigate whether exoplanets are present by obtaining radial velocities with precisions as good as 10 m/s. To date, we have performed 680 single observations (Dec. 2011) and a preliminary analysis of data, spanning a period of up to eight years. Although the sample was pre-selected to avoid the inclusion of binaries, we identify 11 previously unknown binary candidates. Eleven stars clearly displayed larger RV variability and these are candidates to host long-term substellar companions. The average RV is also independent of the stellar magnitude and evolutionary status, confirming that the difference in gravitational redshift between giants and dwarfs is almost cancelled by the atmospheric motions. We use the subsample of solar-type stars to derive a precise true RV for this cluster. We finally create a catalog of binaries and use it to clean the color magnitude diagram (CMD). As conclusion, by pushing the search for planets to the faintest possible magnitudes, it is possible to observe solar analogues in open clusters, and we propose 11 candidates to host substellar companions.Comment: 11 pages, 10 figure
    • …
    corecore