223 research outputs found

    The Novel CXCL12Îł Isoform Encodes an Unstructured Cationic Domain Which Regulates Bioactivity and Interaction with Both Glycosaminoglycans and CXCR4

    Get PDF
    International audienceBACKGROUND: CXCL12alpha, a chemokine that importantly promotes the oriented cell migration and tissue homing of many cell types, regulates key homeostatic functions and pathological processes through interactions with its cognate receptor (CXCR4) and heparan sulfate (HS). The alternative splicing of the cxcl12 gene generates a recently identified isoform, CXCL12gamma, which structure/function relationships remain unexplored. The high occurrence of basic residues that characterize this isoform suggests however that it could feature specific regulation by HS. METHODOLOGY/PRINCIPAL FINDINGS: Using surface plasmon resonance and NMR spectroscopy, as well as chemically and recombinantly produced chemokines, we show here that CXCL12gamma first 68 amino acids adopt a structure closely related to the well described alpha isoform, followed by an unfolded C-terminal extension of 30 amino acids. Remarkably, 60 % of these residues are either lysine or arginine, and most of them are clustered in typical HS binding sites. This provides the chemokine with the highest affinity for HP ever observed (Kd = 0.9 nM), and ensures a strong retention of the chemokine at the cell surface. This was due to the unique combination of two cooperative binding sites, one strictly required, found in the structured domain of the protein, the other one being the C-terminus which essentially functions by enhancing the half life of the complexes. Importantly, this peculiar C-terminus also regulates the balance between HS and CXCR4 binding, and consequently the biological activity of the chemokine. CONCLUSIONS/SIGNIFICANCE: Together these data describe an unusual binding process that gives rise to an unprecedented high affinity between a chemokine and HS. This shows that the gamma isoform of CXCL12, which features unique structural and functional properties, is optimized to ensure its strong retention at the cell surface. Thus, depending on the chemokine isoform to which it binds, HS could differentially orchestrate the CXCL12 mediated directional cell kinesis

    CCL2 nitration is a negative regulator of chemokine-mediated inflammation.

    Get PDF
    Chemokines promote leukocyte recruitment during inflammation. The oxidative burst is an important effector mechanism, this leads to the generation of reactive nitrogen species (RNS), including peroxynitrite (ONOO). The current study was performed to determine the potential for nitration to alter the chemical and biological properties of the prototypical CC chemokine, CCL2. Immunofluorescence was performed to assess the presence of RNS in kidney biopsies. Co-localisation was observed between RNS-modified tyrosine residues and the chemokine CCL2 in diseased kidneys. Nitration reduced the potential of CCL2 to stimulate monocyte migration in diffusion gradient chemotaxis assays (p < 0.05). This was consistent with a trend towards reduced affinity of the nitrated chemokine for its cognate receptor CCR2b. The nitrated chemokine was unable to induce transendothelial monocyte migration in vitro and failed to promote leukocyte recruitment when added to murine air pouches (p < 0.05). This could potentially be attributed to reduced glycosaminoglycan binding ability, as surface plasmon resonance spectroscopy showed that nitration reduced heparan sulphate binding by CCL2. Importantly, intravenous administration of nitrated CCL2 also inhibited the normal recruitment of leukocytes to murine air pouches filled with unmodified CCL2. Together these data suggest that nitration of CCL2 during inflammation provides a mechanism to limit and resolve acute inflammation

    Homeostatic and Tissue Reparation Defaults in Mice Carrying Selective Genetic Invalidation of CXCL12/Proteoglycan Interactions.

    Get PDF
    International audienceBACKGROUND: Interaction with heparan sulfate proteoglycans is supposed to provide chemokines with the capacity to immobilize on cell surface and extracellular matrix for accomplishing both tissue homing and signaling of attracted cells. However, the consequences of the exclusive invalidation of such interaction on the roles played by endogenous chemokines in vivo remain unascertained. METHODS AND RESULTS: We engineered a mouse carrying a Cxcl12 gene (Cxcl12(Gagtm)) mutation that precludes interactions with heparan sulfate structures while not affecting CXCR4-dependent cell signaling of CXCL12 isoforms (α, ÎČ, Îł). Cxcl12(Gagtm/Gagtm) mice develop normally, express normal levels of total and isoform-specific Cxcl12 mRNA, and show increased counting of circulating CD34(+) hematopoietic precursor cells. After induced acute ischemia, a marked impaired capacity to support revascularization was observed in Cxcl12(Gagtm/Gagtm) animals associated with a reduced number of infiltrating cells in the ischemic tissue despite the massive expression of CXCL12 isoforms. Importantly, exogenous administration of CXCL12Îł, which binds heparan sulfate with the highest affinity ever reported for a cytokine, fully restores vascular growth, whereas heparan sulfate-binding CXCL12Îł mutants failed to promote revascularization in Cxcl12(Gagtm/Gagtm) animals. CONCLUSION: These findings prove the role played by heparan sulfate interactions in the functions of CXCL12 in both homeostasis and physiopathological settings and document for the first time the paradigm of chemokine immobilization in vivo

    Structure and functional relevance of the Slit2 homodimerization domain

    Get PDF
    Slit proteins are secreted ligands that interact with the Roundabout (Robo) receptors to provide important guidance cues in neuronal and vascular development. Slit–Robo signalling is mediated by an interaction between the second Slit domain and the first Robo domain, as well as being dependent on heparan sulphate. In an effort to understand the role of the other Slit domains in signalling, we determined the crystal structure of the fourth Slit2 domain (D4) and examined the effects of various Slit2 constructs on chick retinal ganglion cell axons. Slit2 D4 forms a homodimer using the conserved residues on its concave face, and can also bind to heparan sulphate. We observed that Slit2 D4 frequently results in growth cones with collapsed lamellipodia and that this effect can be inhibited by exogenously added heparan sulphate. Our results show that Slit2 D4–heparan sulphate binding contributes to a Slit–Robo signalling mechanism more intricate than previously thought

    The Signal Peptide of Staphylococcus aureus Panton Valentine Leukocidin LukS Component Mediates Increased Adhesion to Heparan Sulfates

    Get PDF
    Staphylococcus aureus necrotizing pneumonia is a severe disease caused by S. aureus strains carrying the Panton Valentine leukocidin (PVL) genes (lukS-PV & lukF-PV) encoded on various bacteriophages (such as phiSLT). Clinical PVL+ strains isolated from necrotizing pneumonia display an increased attachment to matrix molecules (type I and IV collagens and laminin), a phenotype that could play a role in bacterial adhesion to damaged airway epithelium during the early stages of necrotizing pneumonia (J Infect Dis 2004; 190: 1506–15). To investigate the basis of the observed adhesion of S. aureus PVL+ strains, we compared the ability of PVL+ and their isogenic PVL− strains to attach to various immobilized matrix molecules. The expression of recombinant fragments of the PVL subunits and the addition of synthetic peptides indicated that the processed LukS-PV signal peptide (LukS-PV SP) was sufficient to significantly enhance the ability of S. aureus to attach to extracellular matrix (ECM) components. Furthermore, we showed that adhesion to ECM components was inhibited by heparin and heparan sulfates (HS) suggesting that in vivo, HS could function as a molecular bridge between the matrix and S. aureus expressing the LukS-PV signal peptide. Site directed mutagenesis, biochemical and structural analyses of the LukS-PV signal peptide indicate that this peptide is present at the S. aureus surface, binds to HS in solid phase assay, and mediates the enhanced S. aureus matrix component adhesion. Our data suggests that after its cleavage by signal peptidase, the signal peptide is released from the membrane and associates to the cell wall through its unique C-terminus sequence, while its highly positively charged N-terminus is exposed on the bacterial surface, allowing its interaction with extracellular matrix-associated HS. This mechanism may provide a molecular bridge that enhances the attachment of the S. aureus PVL+ strains to ECM components exposed at damaged epithelial sites

    Epithelial chemokine CXCL14 synergizes with CXCL12 via allosteric modulation of CXCR4

    Get PDF
    The chemokine receptor, CXC chemokine receptor 4 (CXCR4), is selective for CXC chemokine ligand 12 (CXCL12), is broadly expressed in blood and tissue cells, and is essential during embryogenesis and hematopoiesis. CXCL14 is a homeostatic chemokine with unknown receptor selectivity and preferential expression in peripheral tissues. Here, we demonstrate that CXCL14 synergized with CXCL12 in the induction of chemokine responses in primary human lymphoid cells and cell lines that express CXCR4. Combining subactive concentrations of CXCL12 with 100–300 nM CXCL14 resulted in chemotaxis responses that exceeded maximal responses that were obtained with CXCL12 alone. CXCL14 did not activate CXCR4-expressing cells (i.e., failed to trigger chemotaxis and Ca2+ mobilization, as well as signaling via ERK1/2 and the small GTPase Rac1); however, CXCL14 bound to CXCR4 with high affinity, induced redistribution of cell-surface CXCR4, and enhanced HIV-1 infection by >3-fold. We postulate that CXCL14 is a positive allosteric modulator of CXCR4 that enhances the potency of CXCR4 ligands. Our findings provide new insights that will inform the development of novel therapeutics that target CXCR4 in a range of diseases, including cancer, autoimmunity, and HIV.—Collins, P. J., McCully, M. L., MartŽınez-Muñoz, L., Santiago, C.,Wheeldon, J., Caucheteux, S., Thelen, S., Cecchinato, V., Laufer, J.M., Purvanov, V.,Monneau, Y. R., Lortat-Jacob, H., Legler, D. F., Uguccioni, M., Thelen, M., Piguet, V., Mellado, M., Moser, B. Epithelial chemokine CXCL14 synergizes with CXCL12 via allosteric modulation of CXCR4. FASEB J. 31, 000–000 (2017). www.fasebj.or

    Hijacking of the Pleiotropic Cytokine Interferon-Îł by the Type III Secretion System of Yersinia pestis

    Get PDF
    Yersinia pestis, the causative agent of bubonic plague, employs its type III secretion system to inject toxins into target cells, a crucial step in infection establishment. LcrV is an essential component of the T3SS of Yersinia spp, and is able to associate at the tip of the secretion needle and take part in the translocation of anti-host effector proteins into the eukaryotic cell cytoplasm. Upon cell contact, LcrV is also released into the surrounding medium where it has been shown to block the normal inflammatory response, although details of this mechanism have remained elusive. In this work, we reveal a key aspect of the immunomodulatory function of LcrV by showing that it interacts directly and with nanomolar affinity with the inflammatory cytokine IFNÎł. In addition, we generate specific IFNÎł mutants that show decreased interaction capabilities towards LcrV, enabling us to map the interaction region to two basic C-terminal clusters of IFNÎł. Lastly, we show that the LcrV-IFNÎł interaction can be disrupted by a number of inhibitors, some of which display nanomolar affinity. This study thus not only identifies novel potential inhibitors that could be developed for the control of Yersinia-induced infection, but also highlights the diversity of the strategies used by Y. pestis to evade the immune system, with the hijacking of pleiotropic cytokines being a long-range mechanism that potentially plays a key role in the severity of plague

    Cxcl12 evolution – subfunctionalization of a ligand through altered interaction with the chemokine receptor

    Get PDF
    The active migration of primordial germ cells (PGCs) from their site of specification towards their target is a valuable model for investigating directed cell migration within the complex environment of the developing embryo. In several vertebrates, PGC migration is guided by Cxcl12, a member of the chemokine superfamily. Interestingly, two distinct Cxcl12 paralogs are expressed in zebrafish embryos and contribute to the chemotattractive landscape. Although this offers versatility in the use of chemokine signals, it also requires a mechanism through which migrating cells prioritize the relevant cues that they encounter. Here, we show that PGCs respond preferentially to one of the paralogs and define the molecular basis for this biased behavior. We find that a single amino acid exchange switches the relative affinity of the Cxcl12 ligands for one of the duplicated Cxcr4 receptors, thereby determining the functional specialization of each chemokine that elicits a distinct function in a distinct process. This scenario represents an example of protein subfunctionalization – the specialization of two gene copies to perform complementary functions following gene duplication – which in this case is based on receptor-ligand interaction. Such specialization increases the complexity and flexibility of chemokine signaling in controlling concurrent developmental processes

    Binding of the chemokine CXCL12α to its natural extracellular matrix ligand heparan sulfate enables myoblast adhesion and facilitates cell motility

    Get PDF
    The chemokine CXCL12α is a potent chemoattractant that guides the migration of muscle precursor cells (myoblasts) during myogenesis and muscle regeneration. To study how the molecular presentation of chemokines influences myoblast adhesion and motility, we designed multifunctional biomimetic surfaces as a tuneable signalling platform that enabled the response of myoblasts to selected extracellular cues to be studied in a well-defined environment. Using this platform, we demonstrate that CXCL12α, when presented by its natural extracellular matrix ligand heparan sulfate (HS), enables the adhesion and spreading of myoblasts and facilitates their active migration. In contrast, myoblasts also adhered and spread on CXCL12α that was quasi-irreversibly surface-bound in the absence of HS, but were essentially immotile. Moreover, co-presentation of the cyclic RGD peptide as integrin ligand along with HS-bound CXCL12α led to enhanced spreading and motility, in a way that indicates cooperation between CXCR4 (the CXCL12α receptor) and integrins (the RGD receptors). Our findings reveal the critical role of HS in CXCL12α induced myoblast adhesion and migration. The biomimetic surfaces developed here hold promise for mechanistic studies of cellular responses to different presentations of biomolecules. They may be broadly applicable for dissecting the signalling pathways underlying receptor cross-talks, and thus may guide the development of novel biomaterials that promote highly specific cellular responses
    • 

    corecore