538 research outputs found

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure

    Measurement of the average time-integrated mixing probability of b-flavored hadrons produced at the Tevatron

    Get PDF
    We have measured the number of like-sign (LS) and opposite-sign (OS) lepton pairs arising from double semileptonic decays of bb and bˉ\bar{b}-hadrons, pair-produced at the Fermilab Tevatron collider. The data samples were collected with the Collider Detector at Fermilab (CDF) during the 1992-1995 collider run by triggering on the existence of μμ\mu \mu and eμe \mu candidates in an event. The observed ratio of LS to OS dileptons leads to a measurement of the average time-integrated mixing probability of all produced bb-flavored hadrons which decay weakly, χˉ=0.152±0.007\bar{\chi} = 0.152 \pm 0.007 (stat.) ±0.011\pm 0.011 (syst.), that is significantly larger than the world average χˉ=0.118±0.005\bar{\chi} = 0.118 \pm 0.005.Comment: 47 pages, 10 figures, 15 tables Submitted to Phys. Rev.

    Double Diffraction Dissociation at the Fermilab Tevatron Collider

    Get PDF
    We present results from a measurement of double diffraction dissociation in pˉp\bar pp collisions at the Fermilab Tevatron collider. The production cross section for events with a central pseudorapidity gap of width Δη0>3\Delta\eta^0>3 (overlapping η=0\eta=0) is found to be 4.43±0.02(stat)±1.18(syst)mb4.43\pm 0.02{(stat)}{\pm 1.18}{(syst) mb} [3.42±0.01(stat)±1.09(syst)mb3.42\pm 0.01{(stat)}{\pm 1.09}{(syst) mb}] at s=1800\sqrt{s}=1800 [630] GeV. Our results are compared with previous measurements and with predictions based on Regge theory and factorization.Comment: 10 pages, 4 figures, using RevTeX. Submitted to Physical Review Letter

    Measurement of B(t->Wb)/B(t->Wq) at the Collider Detector at Fermilab

    Get PDF
    We present a measurement of the ratio of top-quark branching fractions R= B(t -> Wb)/B(t -> Wq), where q can be a b, s or a d quark, using lepton-plus-jets and dilepton data sets with integrated luminosity of ~162 pb^{-1} collected with the Collider Detector at Fermilab during Run II of the Tevatron. The measurement is derived from the relative numbers of t-tbar events with different multiplicity of identified secondary vertices. We set a lower limit of R > 0.61 at 95% confidence level.Comment: 7 pages, 2 figures, published in Physical Review Letters; changes made to be consistent with published versio

    Search for Gluinos and Scalar Quarks in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy plus Multijets Signature

    Get PDF
    We have performed a search for gluinos (\gls) and squarks (\sq) in a data sample of 84 pb1^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab, by investigating the final state of large missing transverse energy and 3 or more jets, a characteristic signature in R-parity-conserving supersymmetric models. The analysis has been performed `blind', in that the inspection of the signal region is made only after the predictions from Standard Model backgrounds have been calculated. Comparing the data with predictions of constrained supersymmetric models, we exclude gluino masses below 195 \gev (95% C.L.), independent of the squark mass. For the case \msq \approx \mgls, gluino masses below 300 \gev are excluded.Comment: 7 pages, 3 figure

    Limits on Anomalous Triple Gauge Couplings in ppbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present a search for anomalous triple gauge couplings (ATGC) in WW and WZ boson production. The boson pairs are produced in ppbar collisions at sqrt{s}=1.96 TeV, and the data sample corresponds to 350 pb-1 of integrated luminosity collected with the CDF II detector at the Fermilab Tevatron. In this search one W decays to leptons, and the other boson (W or Z) decays hadronically. Combining with a previously published CDF measurement of Wgamma boson production yields ATGC limits of -0.18 < lambda < 0.17 and -0.46 < Delta kappa < 0.39 at the 95% confidence level, using a cut-off scale Lambda=1.5 TeV.Comment: 7 pages, 3 figures. Submitted to Phys. Rev.

    Precision measurement of the top quark mass from dilepton events at CDF II

    Get PDF
    We report a measurement of the top quark mass, M_t, in the dilepton decay channel of ttˉb+νbˉνˉt\bar{t}\to b\ell'^{+}\nu_{\ell'}\bar{b}\ell^{-}\bar{\nu}_{\ell} using an integrated luminosity of 1.0 fb^{-1} of p\bar{p} collisions collected with the CDF II detector. We apply a method that convolutes a leading-order matrix element with detector resolution functions to form event-by-event likelihoods; we have enhanced the leading-order description to describe the effects of initial-state radiation. The joint likelihood is the product of the likelihoods from 78 candidate events in this sample, which yields a measurement of M_{t} = 164.5 \pm 3.9(\textrm{stat.}) \pm 3.9(\textrm{syst.}) \mathrm{GeV}/c^2, the most precise measurement of M_t in the dilepton channel.Comment: 7 pages, 2 figures, version includes changes made prior to publication by journa

    Cross Section Measurements of High-pTp_T Dilepton Final-State Processes Using a Global Fitting Method

    Get PDF
    We present a new method for studying high-pTp_T dilepton events (e±ee^{\pm}e^{\mp}, μ±μ\mu^{\pm}\mu^{\mp}, e±μe^{\pm}\mu^{\mp}) and simultaneously extracting the production cross sections of ppˉttˉp\bar{p} \to t\bar{t}, ppˉW+Wp\bar{p} \to W^+W^-, and p\bar{p} \to \ztt at a center-of-mass energy of s=1.96\sqrt{s} = 1.96 TeV. We perform a likelihood fit to the dilepton data in a parameter space defined by the missing transverse energy and the number of jets in the event. Our results, which use 360pb1360 {\rm pb^{-1}} of data recorded with the CDF II detector at the Fermilab Tevatron Collider, are σ(ttˉ)=8.52.2+2.7\sigma(t\bar{t}) = 8.5_{-2.2}^{+2.7} pb, σ(W+W)=16.34.4+5.2\sigma(W^+W^-) = 16.3^{+5.2}_{-4.4} pb, and \sigma(\ztt) =291^{+50}_{-46} pb.Comment: 20 pages, 2 figures, to be submitted to PRD-R

    Search for ZZ and ZW Production in ppbar Collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for ZZ and ZW vector boson pair production in ppbar collisions at sqrt(s) = 1.96 TeV using the leptonic decay channels ZZ --> ll nu nu, ZZ --> l l l' l' and ZW --> l l l' nu. In a data sample corresponding to an integrated luminosity of 194 pb-1 collected with the Collider Detector at Fermilab, 3 candidate events are found with an expected background of 1.0 +/- 0.2 events. We set a 95% confidence level upper limit of 15.2 pb on the cross section for ZZ plus ZW production, compared to the standard model prediction of 5.0 +/- 0.4 pb.Comment: 7 pages, 2 figures. This version is accepted for publication by Phys. Rev. D Rapid Communication

    Observation of WZ Production

    Get PDF
    We report the first observation of the associated production of a W boson and a Z boson. This result is based on 1.1 fb-1 of integrated luminosity from ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We observe 16 WZ candidates passing our event selection with an expected background of 2.7 +/- 0.4 events. A fit to the missing transverse energy distribution indicates an excess of events compared to the background expectation corresponding to a significance equivalent to six standard deviations. The measured cross section is sigma(ppbar -> WZ) = 5.0^{+1.8}_{-1.6} pb, consistent with the standard model expectation.Comment: 7 pages, 3 figures. Submitted to Phys. Rev. Let
    corecore