1,871 research outputs found

    Prokaryotic Diversity of the Composting Thermophilic Phase: The Case of Ground Coffee Compost

    Get PDF
    Waste biomass coming from a local coffee company, which supplied burnt ground coffee after an incorrect roasting process, was employed as a starting material in the composting plant of the Experimental Station of the University of Naples Federico II at Castel Volturno (CE). The direct molecular characterization of compost using 13C-NMR spectra, which was acquired through cross-polarization magic-angle spinning, showed a hydrophobicity index of 2.7% and an alkyl/hydroxyalkyl index of 0.7%. Compost samples that were collected during the early “active thermophilic phase” (when the composting temperature was 63 C) were analyzed for the prokaryotic community composition and activities. Two complementary approaches, i.e., genomic and predictive metabolic analysis of the 16S rRNA V3–V4 amplicon and culture-dependent analysis, were combined to identify the main microbial factors that characterized the composting process. The whole microbial community was dominated by Firmicutes. The predictive analysis of the metabolic functionality of the community highlighted the potential degradation of peptidoglycan and the ability of metal chelation, with both functions being extremely useful for the revitalization and fertilization of agricultural soils. Finally, three biotechnologically relevant Firmicutes members, i.e., Geobacillus thermodenitrificans subsp. calidus, Aeribacillus pallidus, and Ureibacillus terrenus (strains CAF1, CAF2, and CAF5, respectively) were isolated from the “active thermophilic phase” of the coffee composting. All strains were thermophiles growing at the optimal temperature of 60 C. Our findings contribute to the current knowledge on thermophilic composting microbiology and valorize burnt ground coffee as waste material with biotechnological potentialities

    High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERN

    Get PDF
    A new high flux experimental area has recently become operational at the n_TOF facility at CERN. This new measuring station, n_TOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutron-converting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197Au foils in the beam.Peer reviewe

    Recoil Proton Telescopes and Parallel Plate Avalanche Counters for the 235^{235}U(n,f) cross section measurement relative to H(n,n)H between 10 and 450 MeV neutron energy

    Full text link
    With the aim of measuring the 235^{235}U(n,f) cross section at the n\_TOF facility at CERN over a wide neutron energy range, a detection system consisting of two fission detectors and three detectors for neutron flux determination was realized. The neutron flux detectors are Recoil Proton Telescopes (RPT), based on scintillators and solid state detectors, conceived to detect recoil protons from the neutron-proton elastic scattering reaction. This system, along with a fission chamber and an array of parallel plate avalanche counters for fission event detection, was installed for the measurement at the n\_TOF facility in 2018, at CERN. An overview of the performances of two RPTs - especially developed for this measurement - and of the parallel plate avalanche counters are described in this article. In particular, the characterization in terms of detection efficiency by Monte Carlo simulations and response to neutron beam, the study of the background, dead time correction and characterization of the samples, are reported. The results of the present investigation show that the performances of these detectors are suitable for accurate measurements of fission reaction cross sections in the range from 10 to 450~MeV

    Further studies on the physics potential of an experiment using LHC neutrinos

    Get PDF
    We discuss an experiment to investigate neutrino physics at the LHC, with emphasis on tau flavour. As described in our previous paper Beni et al (2019 J. Phys. G: Nucl. Part. Phys. 46 115008), the detector can be installed in the decommissioned TI18 tunnel, ≈ 480 m downstream the ATLAS cavern, after the first bending dipoles of the LHC arc. The detector intercepts the intense neutrino flux, generated by the LHC beams colliding in IP1, at large pseudorapidity η, where neutrino energies can exceed a TeV. This paper focuses on exploring the neutrino pseudorapity versus energy phase space available in TI18 in order to optimize the detector location and acceptance for neutrinos originating at the pp interaction point, in contrast to neutrinos from pion and kaon decays. The studies are based on the comparison of simulated pp collisions at √s = 13 TeV: PYTHIA events of heavy quark (c and b) production, compared to DPMJET minimum bias events (including charm) with produced particles traced through realistic LHC optics with FLUKA. Our studies favour a configuration where the detector is positioned off the beam axis, slightly above the ideal prolongation of the LHC beam from the straight section, covering 7.4 < η < 9.2. In this configuration, the flux at high energies (0.5-1.5 TeV and beyond) is found to be dominated by neutrinos originating directly from IP1, mostly from charm decays, of which ∼50% are electron neutrinos and ∼5% are tau neutrinos. The contribution of pion and kaon decays to the muon neutrino flux is found small at those high energies. With 150 f b-1 of delivered LHC luminosity in Run 3 the experiment can record a few thousand very high energy neutrino charged current (CC) interactions and over 50 tau neutrino CC events. These events provide useful information in view of a high statistics experiment at HL-LHC. The electron and muon neutrino samples can extend the knowledge of the charm PDF to a new region of x, which is dominated by theory uncertainties. The tau neutrino sample can provide first experience on reconstruction of tau neutrino events in a very boosted regime

    Randomized, double-blind, placebo-controlled trial of rapamycin in amyotrophic lateral sclerosis

    Get PDF
    In preclinical studies rapamycin was found to target neuroinflammation, by expanding regulatory T cells, and affecting autophagy, two pillars of amyotrophic lateral sclerosis (ALS) pathogenesis. Herein we report a multicenter, randomized, double-blind trial, in 63 ALS patients who were randomly assigned in a 1:1:1 ratio to receive rapamycin 2 mg/m2/day,1 mg/m2/day or placebo (EUDRACT 2016-002399-28; NCT03359538). The primary outcome, the number of patients exhibiting an increase >30% in regulatory T cells from baseline to treatment end, was not attained. Secondary outcomes were changes from baseline of T, B, NK cell subpopulations, inflammasome mRNA expression and activation status, S6-ribosomal protein phosphorylation, neurofilaments; clinical outcome measures of disease progression; survival; safety and quality of life. Of the secondary outcomes, rapamycin decreased mRNA relative expression of the pro-inflammatory cytokine IL-18, reduced plasmatic IL-18 protein, and increased the percentage of classical monocytes and memory switched B cells, although no corrections were applied for multiple tests. In conclusion, we show that rapamycin treatment is well tolerated and provides reassuring safety findings in ALS patients, but further trials are necessary to understand the biological and clinical effects of this drug in ALS

    Time-of-flight and activation experiments on 147Pm and 171Tm for astrophysics

    Get PDF
    The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n,γ) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm and 171Tm have been produced by irradiation of stable isotopes at the ILL high flux reactor. Neutron capture on 146Nd and 170Er at the reactor was followed by beta decay and the resulting matrix was purified via radiochemical separation at PSI. The radioactive targets have been used for time-of-flight measurements at the CERN n-TOF facility using the 19 and 185 m beam lines during 2014 and 2015. The capture cascades were detected using a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross section of 147Pm and 171Tm. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity 30 keV quasi-Maxwellian flux of neutrons will be performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The status of these experiments and preliminary results will be presented and discussed as well

    Measurement of the 240Pu(n,f) cross-section at the CERN n-TOF facility : First results from experimental area II (EAR-2)

    Get PDF
    The accurate knowledge of the neutron-induced fission cross-sections of actinides and other isotopes involved in the nuclear fuel cycle is essential for the design of advanced nuclear systems, such as Generation-IV nuclear reactors. Such experimental data can also provide the necessary feedback for the adjustment of nuclear model parameters used in the evaluation process, resulting in the further development of nuclear fission models. In the present work, the 240Pu(n,f) cross-section was measured at CERN's n-TOF facility relative to the well-known 235U(n,f) cross section, over a wide range of neutron energies, from meV to almost MeV, using the time-of-flight technique and a set-up based on Micromegas detectors. This measurement was the first experiment to be performed at n-TOF's new experimental area (EAR-2), which offers a significantly higher neutron flux compared to the already existing experimental area (EAR-1). Preliminary results as well as the experimental procedure, including a description of the facility and the data handling and analysis, are presented

    Characterization of the n-TOF EAR-2 neutron beam

    Get PDF
    The experimental area 2 (EAR-2) at CERNs neutron time-of-flight facility (n-TOF), which is operational since 2014, is designed and built as a short-distance complement to the experimental area 1 (EAR-1). The Parallel Plate Avalanche Counter (PPAC) monitor experiment was performed to characterize the beam prole and the shape of the neutron 'ux at EAR-2. The prompt γ-flash which is used for calibrating the time-of-flight at EAR-1 is not seen by PPAC at EAR-2, shedding light on the physical origin of this γ-flash
    corecore