162 research outputs found

    The effect of cyclones crossing the Mediterranean region on sea level anomalies on the Mediterranean Sea coast

    Get PDF
    Abstract. Large positive and negative sea level anomalies on the coast of the Mediterranean Sea are linked to intensity and position of cyclones moving along the Mediterranean storm track with dynamics involving different factors. This analysis is based on a model hindcast and considers nine coastal stations, which are representative of sea level anomalies with different magnitudes and characteristics. When a shallow water fetch is present, the wind around the cyclone centre is the main cause of positive and negative sea level anomalies, depending on its onshore or offshore direction. The inverse barometer effect produces a positive anomaly on the coast near the cyclone pressure minimum and a negative anomaly at the opposite side of the Mediterranean Sea. The latter is caused by the cross-basin mean sea level pressure gradient that is associated with the presence of a cyclone. This often coincides with the presence of an anticyclone above the station, which causes a local negative inverse barometer effect. Further, at some stations, negative sea level anomalies are reinforced by a residual water mass redistribution within the basin, which is associated with a transient response to the atmospheric pressure forcing. Though the link with the presence of a cyclone in the Mediterranean has comparable importance for positive and negative anomalies, the relation between cyclone position and intensity is stronger for the magnitude of positive events. The area of cyclogenesis, track of the central minimum and position at the time of the event differ depending on the location the sea level anomaly occurs and on its sign. The western Mediterranean is the main cyclogenesis area for both positive and negative anomalies overall. Atlantic cyclones mainly produce positive sea level anomalies in the western basin. At the easternmost stations, positive anomalies are caused by cyclogenesis in the eastern Mediterranean. North African cyclogenesis is a major source of positive anomalies on the central African coast and negative anomalies on the eastern Mediterranean and northern Aegean coasts

    Development of a satellite SAR image spectra and altimeter wave height data assimilation system for ERS-1

    Get PDF
    The applicability of ERS-1 wind and wave data for wave models was studied using the WAM third generation wave model and SEASAT altimeter, scatterometer and SAR data. A series of global wave hindcasts is made for the surface stress and surface wind fields by assimilation of scatterometer data for the full 96-day SEASAT and also for two wind field analyses for shorter periods by assimilation with the higher resolution ECMWF T63 model and by subjective analysis methods. It is found that wave models respond very sensitively to inconsistencies in wind field analyses and therefore provide a valuable data validation tool. Comparisons between SEASAT SAR image spectra and theoretical SAR spectra derived from the hindcast wave spectra by Monte Carlo simulations yield good overall agreement for 32 cases representing a wide variety of wave conditions. It is concluded that SAR wave imaging is sufficiently well understood to apply SAR image spectra with confidence for wave studies if supported by realistic wave models and theoretical computations of the strongly nonlinear mapping of the wave spectrum into the SAR image spectrum. A closed nonlinear integral expression for this spectral mapping relation is derived which avoids the inherent statistical errors of Monte Carlo computations and may prove to be more efficient numerically

    Factors controlling Hadley circulation changes from the Last Glacial Maximum to the end of the 21st century

    Get PDF
    The Hadley circulation (HC) extent and strength are analyzed in a wide range of simulated climates from the Last Glacial Maximum to global warming scenarios. Motivated by HC theories, we analyze how the HC is influenced by the subtropical stability, the near-surface meridional potential temperature gradient, and the tropical tropopause level. The subtropical static stability accounts for the bulk of the HC changes across the simulations. However, since it correlates strongly with global mean surface temperature, most HC changes can be attributed to global mean surface temperature changes. The HC widens as the climate warms, and it also weakens, but only robustly so in the Northern Hemisphere. On the other hand, the Southern Hemisphere strength response is uncertain, in part because subtropical static stability changes counteract meridional potential temperature gradient changes to various degrees in different models, with no consensus on the response of the latter to global warming

    Factors controlling Hadley circulation changes from the Last Glacial Maximum to the end of the 21st century

    Get PDF
    The Hadley circulation (HC) extent and strength are analyzed in a wide range of simulated climates from the Last Glacial Maximum to global warming scenarios. Motivated by HC theories, we analyze how the HC is influenced by the subtropical stability, the near-surface meridional potential temperature gradient, and the tropical tropopause level. The subtropical static stability accounts for the bulk of the HC changes across the simulations. However, since it correlates strongly with global mean surface temperature, most HC changes can be attributed to global mean surface temperature changes. The HC widens as the climate warms, and it also weakens, but only robustly so in the Northern Hemisphere. On the other hand, the Southern Hemisphere strength response is uncertain, in part because subtropical static stability changes counteract meridional potential temperature gradient changes to various degrees in different models, with no consensus on the response of the latter to global warming

    Venice as a paradigm of coastal flooding under multiple compound drivers

    Get PDF
    Full comprehension of the dynamics of hazardous sea levels is indispensable for assessing and managing coastal flood risk, especially under a changing climate. The 12 November 2019 devastating flood in the historical city of Venice (Italy) stimulated new investigations of the coastal flooding problem from different perspectives and timescales. Here Venice is used as a paradigm for coastal flood risk, due to the complexity of its flood dynamics facing those of many other locations worldwide. Spectral decomposition was applied to the long-term 1872-2019 sea-level time series in order to investigate the relative importance of different drivers of coastal flooding and their temporal changes. Moreover, a multivariate analysis via copulas provided statistical models indispensable for correctly understanding and reproducing the interactions between the variables at play. While storm surges are the main drivers of the most extreme events, tides and long-term forcings associated with planetary atmospheric waves and seasonal to inter-annual oscillations are predominant in determining recurrent nuisance flooding. The non-stationary analysis revealed a positive trend in the intensity of the non-tidal contribution to extreme sea levels in the last three decades, which, along with relative sea-level rise, contributed to an increase in the frequency of floods in Venice

    Multivariate statistical modelling of future marine storms

    Get PDF
    Extreme events, such as wave-storms, need to be characterized for coastal infrastructure design purposes. Such description should contain information on both the univariate behaviour and the joint-dependence of storm-variables. These two aspects have been here addressed through generalized Pareto distributions and hierarchical Archimedean copulas. A non-stationary model has been used to highlight the relationship between these extreme events and non-stationary climate. It has been applied to a Representative Concentration Pathway 8.5 Climate-Change scenario, for a fetch-limited environment (Catalan Coast). In the non-stationary model, all considered variables decrease in time, except for storm-duration at the northern part of the Catalan Coast. The joint distribution of storm variables presents cyclical fluctuations, with a stronger influence of climate dynamics than of climate itself.Peer ReviewedPostprint (author's final draft

    A review of potential physical impacts on harbours in the Mediterranean Sea under climate change

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10113-016-0972-9The potential impact of climate change on port operations and infrastructures has received much less attention than the corresponding impact for beach systems. However, ports have always been vulnerable to weather extremes and climate change could enhance such occurrences at timescales comparable to the design lifetime of harbour engineering structures. The analysis in this paper starts with the main climatic variables affecting harbour engineering and exploitation. It continues with a review of the available projections for such variables first at global scale and then at a regional scale (Catalan coast in the western Mediterranean) as a study case for similar environments in the planet. The detailed assessment of impacts starts from downscaled projections for mean sea level and wave storms (wind not considered in the paper). This is followed by an analysis of the port operations and infrastructure performance that are relevant from a climate perspective. The key climatic factors here considered are relative sea level, wave storm features (height, period, direction and duration) and their combined effect, which is expected to produce the highest impacts. The paper ends with a discussion and some examples of analyses aiming at port adaptation to future climate change.Peer ReviewedPostprint (author's final draft

    Factors controlling Hadley circulation changes from the Last Glacial Maximum to the end of the 21st century

    Get PDF
    The Hadley circulation (HC) extent and strength are analyzed in a wide range of simulated climates from the Last Glacial Maximum to global warming scenarios. Motivated by HC theories, we analyze how the HC is influenced by the subtropical stability, the near-surface meridional potential temperature gradient, and the tropical tropopause level. The subtropical static stability accounts for the bulk of the HC changes across the simulations. However, since it correlates strongly with global mean surface temperature, most HC changes can be attributed to global mean surface temperature changes. The HC widens as the climate warms, and it also weakens, but only robustly so in the Northern Hemisphere. On the other hand, the Southern Hemisphere strength response is uncertain, in part because subtropical static stability changes counteract meridional potential temperature gradient changes to various degrees in different models, with no consensus on the response of the latter to global warming

    Dynamical and statistical downscaling of precipitation and temperature in a Mediterranean area

    Get PDF
    In this paper we present and discuss a comparison between statistical and regional climate modeling techniques for downscaling GCM prediction. The comparison is carried out over the Capitanata region, an area of agricultural interest in south-eastern Italy, for current (1961-1990) and future (2071-2100) climate. The statistical model is based on Canonical Correlation Analysis (CCA), associated with a data pre-filtering obtained by a Principal Component Analysis (PCA), whereas the Regional Climate Model REGCM3 was used for dynamical downscaling. Downscaling techniques were applied to estimate rainfall, maximum and minimum temperatures and average number of consecutive wet and dry days. Both methods have comparable skills in estimating stations data. They show good results for spring, the most important season for agriculture. Both statistical and dynamical models well reproduce the statistical properties of precipitation, the crucial variable for the growth of crops
    • …
    corecore