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Abstract 

In this paper we present and discuss a  comparison between  statis-
tical and regional climate  modeling techniques for downscaling GCM
prediction. The comparison is carried out over the Capitanata region,
an area of agricultural interest in south-eastern Italy, for current
(1961-1990) and future (2071-2100) climate. The statistical model is
based on Canonical Correlation Analysis (CCA), associated with a data
pre-filtering obtained by a Principal Component Analysis (PCA),
whereas the Regional Climate Model REGCM3 was used for dynamical
downscaling.  Downscaling techniques were applied to estimate rain-
fall, maximum and minimum temperatures and average number of
consecutive wet and dry days. Both methods  have comparable skills in
estimating stations data. They show good results for spring, the most
important season for agriculture. Both statistical and dynamical mod-
els well reproduce the statistical properties of precipitation, the crucial
variable for the growth of crops.

Introduction

The fourth report of the Intergovernmental Panel on Climate
Change (IPCC, 2007) concluded that warming of the climate system is
unequivocal, and that most of the observed increase in global average
surface temperatures since the mid 20th century is very likely due to
the observed increase in the concentration of CO2 and other green-
house gases. The increase is expected to continue in the future, even
in the most optimistic of the greenhouse gas emission scenarios,
described in the IPCC Special Report on Emissions Scenarios (IPCC,
2000) and based on expected socio-economical evolutions. The most
appropriate approach to obtain information on global climate is the
use of Atmospheric-Ocean Global Climate Models (GCMs). They can
simulate the processes of the atmosphere-ocean system relevant at
global and continental scale and, although there are many uncertain-
ties in their formulation, they can be confidently used to assess cli-
mate changes resulting from increases of atmospheric greenhouse
gases concentration. Recent advances in climate change modelling
now enable better estimates than in the past and likely assess uncer-
tainty ranges. In fact, in the framework of intercomparison projects
(e.g., EU FP6 Ensembles project), simulations of  future climate are
performed using different GCMs and  for different emissions scenar-
ios.  Unfortunately, GCMs climate projections cannot be used directly
in impact studies, due to difference between the coarse spatial (and
temporal) resolution of GCMs (generally of order 100 km) and the
small scale resolution needed by environmental impact models (typi-
cally of order 10 km or less), that are very sensitive to local climate.
Thus, downscaling techniques have been developed, which use the
large-scale predictions provided by a GCM to assess climate change
information on a regional scale. This approach has been widely used
in impact studies, such as the statistical evaluation of river flows
(DiazNieto and Wilby, 2003), floods (Charlton et al., 2006), groundwa-
ter recharge (Holman et al., 2009), and, more in general, water
resource planning (Prudhomme and Davies, 2009a,b). The downscal-
ing models can be divided into two main categories: the statistical
models, which are based on regression analysis used to derive semi-
empirical statistical relationships between the large-scale predictors
and local (station) scale predictands; the dynamical models, which are
high-resolution Regional Climate Models (RCMs) nested in a coarser
resolution GCM. In the statistical approach, the empirical relation-
ships are derived by using historical meteorological series defined at
the coarse GCM grid resolution and historical series from a set of sta-
tions available in the area of interest, typically characterized by a small
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distance. The dynamical approach is similar to the grid one-way nest-
ing technique used in weather forecast and other meteorological appli-
cations. However, both the downscaling approaches have some draw-
backs. For example, the dynamical downscaling needs large computing
resources and is strongly dependent on the boundary conditions that
are provided by GCMs; also, it is based on the assumption that the actu-
al parameterization schemes are still valid in a future climate; the sta-
tistical downscaling needs long time series (that are available for long
periods only in limited regions) to build statistical relationships, that
are supposed to be still valid in the future. Also, both methods inherit
the inaccuracies present in the GCM outputs: Prudhomme and Davies
(2009a,b) observed that the existing bias in reproducing the present
climate is likely to be transferred to simulations in future time hori-
zons. In order to partially overcome this problem, they suggest to use
more than one downscaling technique and to compare the results to get
a more reliable picture. Haylock et al. (2006) agreed with this consid-
eration and noticed that the differences between different downscaling
models are at least as large as the differences between different SRES
(Special Report on Emissions Scenarios, the most widely used and
cited scenarios , that form the basis for the IPCC assessments). As a
consequence, they suggested to include different types of downscaling
models and emission scenarios when developing climate-change pro-
jections at the local scale. One of the first comparisons between differ-
ent downscaling models is given by Wilby et al. (1998). They compared
only statistical models and found that neural networks were the last
skilful in reproducing observed rainfall, mainly due to wrong estima-
tion of wet-day occurrence. Kidson and Thomson (1998) found that
dynamical and statistical approaches have similar skills in downscaling
daily precipitation, minimum and maximum temperature. Murphy
(1999) found that a Linear Regression Statistical Model (LRSM) has
skills comparable to a Regional Climate Model (RCM) in downscaling
monthly precipitation and temperature over Europe. Wilby et al. (2000)
also compared the results obtained from a LRSM and a RCM relative to
daily precipitation, runoff and temperature in the Animas River basin
(Colorado) and reached a similar conclusion for daily data. Also, they
noticed that both the methods were more skilful than the raw National
Center for Environmental Prediction (www.cdc.noaa.gov) analysis pre-
cipitation data. Haylock et al. (2006) compared several statistical and
dynamical downscaling models with a new version of a non-linear arti-
ficial neural network, finding that the latter was the best at reproduc-
ing inter-annual variability, but that also has the tendency to underes-
timate the extremes. 

Downscaling of GCM model output is particularly important for
assessing regional climate change for a region like the
Mediterranean area, which is characterized by high space variabili-
ty and many climate types. This variability is due to a combination
of different factors: the complex orography; the complicated land-sea
patterns of the basin; the Mediterranean Sea itself, that influences
the genesis and the distribution of cyclones through air-sea interac-
tion mechanisms and latent heat release (Lionello et al., 2006,
Moscatello et al., 2008). Also, the position of the Mediterranean
region makes the regional climate dependent on both mid-latitude
climate in the north and on tropical climate in the south. In fact,
mid-latitude regimes, such as the North Atlantic Oscillation (NAO)
and the East Atlantic pattern (Trigo and Palutikof, 2001), and tropi-
cal phenomena, like El Nino Southern Oscillation (ENSO), affect the
weather regimes during Winter; the Asian and the African monsoon
and geopotential blocking anomalies over central Europe influence
the climate during Summer (Alpert et al., 2006). About historical
records, trends from 1900 show that precipitation declined in the
Mediterranean basin; also, a temperature increase larger than the
global average (especially during Summer) as well as an increase in
the number of heat waves have been recorded. Giorgi and Lionello
(2008) show that GCMs generally agree on a substantial future dry-

ing of the Mediterranean region in all the different (SRES) scenar-
ios, especially in the warm season. In IPCC (2007), the authors show
that different GCM experiments agree in a regional mean tempera-
ture increase of 0.5-1°C for the period 2011-2030 (with respect to
the period 1960-1990) which is insensitive to the choice of the SRES
scenario. These results point out that, with high confidence, the
Mediterranean basin will suffer from a decrease in water resources
due to climate change in the near future. Thus, drought-affected
areas are expected to increase in extent, with adverse impact on
multiple sectors, such as water resources, energy production, agri-
culture, ecosystems. The projected changes are, however, not uni-
form in the whole region, stressing the need of downscaling tech-
niques able to resolve internal differences in the basin and to repro-
duce the detailed spatial distribution. Statistical downscaling has
been applied to precipitation climate change in several studies in
different Mediterranean areas (e.g., von Storch et al., 1993; Corte-
Real et al., 1995; Goodess and Palutikof, 1998; Palatella et al., 2010).
More recently, different GCMs, scenarios and predictors, have been
tested for statistical downscaling of precipitation during the wet sea-
son (Hertig and Jacobeit, 2008a), reporting different climate change
signals in different areas and confirming the need of an analysis
that is capable of resolving internal differences within the
Mediterranean region. Statistical downscaling for temperature has
shown a projected increase for the whole Mediterranean area for all
months of the year in the period 2071-2100 compared to 1990-2019;
the assessed temperature rise varies depending on region and sea-
son, but overall substantial temperature changes of partly more than
0.5-1C° have to be anticipated by the end of this century under
enhanced greenhouse warming conditions (Hertig and Jacobeit,
2008b). For the European continent, a number of studies with
regional climate models focused on future changes in extreme
events (e.g., Frei et al., 2006; Beniston et al., 2007). In this context,
the STARDEX project (the Statistical and regional dynamical down-
scaling of extremes for European regions; Gooddess, 2005) provided
a rigorous and systematic inter-comparison and evaluation of statis-
tical, dynamical and statistical-dynamical downscaling methods for
the construction of scenarios of extremes for six different European
regions. The EU project PRUDENCE (Prediction of Regional scenar-
ios and Uncertainties for Defining European Climate change risks
and Effects) provided an ensemble of high-resolution climate
change scenarios for Europe at the end of the twenty-first century by
means of dynamical downscaling (Christensen et al., 2007). The
simulations in PRUDENCE have been compared with global simula-
tions (Deque et al., 2005), and have been used to assess tempera-
ture and precipitation change signals, e.g. in Italy (Coppola and
Giorgi, 2010) and Greece (Zanis et al., 2009), and changes in
European drought characteristics (Blenkinsop and Fowler, 2007).
The EU project ENSEMBLES (Hewitt, 2005) will further advance the
state-of-the-art by comparing different methods for representing cli-
mate model uncertainty and linking these methods to downscaling
techniques in order to improve the robustness of climate change
impact assessments. 

In the present study a comparison of temperature and precipitation
future projections, obtained from a dynamical and a statistical down-
scaling model, are presented and discussed. The study is focused on
the Capitanata plane (Apulia), a region of agricultural interest in the
Mediterranean area, positioned in South Italy. An intercomparison
between these methods is important  in order to provide an estimate of
the uncertainties of future projections in this small area. In the pres-
ent study, the analysis of the future local scenarios in this region is cru-
cial to evaluate the effect of climate change on local agriculture and can
also provide a better understanding of the future climate in the South
Mediterranean. In this context, the European Project MedClivar, aims
to coordinate and promote the study of this area.
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Materials and methods

Predictor: Sea Level Pressure from EMULATE dataset
and T1000 from ECMWF

The Sea Level Pressure (SLP) EMULATE dataset (Ansell et al., 2006)
is based on daily averaged sea level pressure values for the period from
January 1850 to December 2003. The data cover the region from 70°W-
70°N (top left corner) to 50°E-25°N (bottom right corner). The grid res-
olution is 5°¥5° in latitude and longitude. This means that at each time
step the dataset consists of 250 SLP values. The dataset covers the
region involved in the North Atlantic Oscillation (NAO) and in the
dynamical features responsible for precipitation in Europe. The
National Centers for Environmental Prediction (www.cdc.noaa.gov)
monthly averaged 1000 hPa temperature reanalysis (T1000) is
retrieved from the National Oceanic and Atmospheric Administration
(NOAA) data server, for the period from 1948 to 2007. The data cover
Europe and Asia and are distributed on a Gaussian grid of 73¥37 grid
points with a resolution of 2.5°¥2.5°. To obtain a resolution compara-
ble with that of SLP, we upscale the data on the same grid points of the
EMULATE dataset. The upscaling is recommended because in this way
the resolution of both predictors is comparable with that of the GCM
data available for future scenarios (temperature).

Predictands for the Capitanata region
Regarding the predictands needed in the statistical approach, a

dataset of historical local scale meteorological variables were made
available in the framework of the Italian Research Project on the
Evolution of cropping systems as affected by climate change
(CLIMESCO). The downscaling technique was applied in two sub-
regions characterised by intense agricultural activity: the Capitanata
plain and Delia-Nivolelli basin. The Capitanata plain (about 4000 km2)
is located in the Northern part of Apulia region and is one of the most
important areas for the Italian agriculture; the most widespread crop is
wheat. The Delia-Nivolelli basin, with an extension of about 60 km2, is
located in south-western Sicily. In the present paper, we will consider
only the first basin. In these areas, the annual evapotranspiration is
generally greater than rainfall, determining drought conditions that
make irrigation necessary for agriculture. Thus, climate changes in
temperature and pluviometric regime could have a substantial impact
on some agronomical practices as the choice of the crops to be includ-
ed in the rotations, the sowing time and the irrigation scheduling in
both regions. Based on the available datasets, the following predictands
have been chosen for the Capitanata area: the daily series of maximum
and minimum temperature in the city of Foggia (in the station named
Podere 124) (from 1951 to 2005), monthly precipitation data recorded
in six stations in the sub-region (from 1935 to 2003). The location of
the stations is shown in Figure 1. 

About local climate, Figure 2 shows the monthly averaged precipita-
tion amount and the number of WET days for each month, while Figure
3 shows the annual cycle of Tmin and Tmax.  The region shows a typical
semi-arid Mediterranean climate, with hot and dry summer and rather
mild and humid winter. The rainfall is mainly concentrated in fall and
winter, while weak precipitation is recorded in late spring and summer,
with a few tens of mm recorded throughout summer.

Global climate model data
We retrieved the SLP and T1000 projections relative to the A2 and B1

scenarios of the Third Assessment Report (TAR) from the International
Panel on Climate Change IPCC-Data server (http://cera-www.dkrz.de/).
The data from ECHAM5 developed by the Max Planck Institute for
Meteorology (MPI-M) is considered here. The data are available on a
192¥96 grid.
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Figure 1. Temperature (triangle) and precipitation (circles) sta-
tions used for the statistical downscaling.

Figure 2. Monthly precipitation amount (upper panel) and num-
ber of wet days (bottom panel) averaged across all stations for
each month.

Figure 3. Maximum (upper panel) and minimum temperature
(bottom panel) averaged in Foggia Podere 124 station for each
month. 
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Statistical downscaling - canonical correlation analysis
Statistical downscaling is a computer-wise cheap method for the

description of seasonal climate variability at regional and local scale,
i.e. local meteorological variables that are not adequately described in
climatic projections of GCM's. Statistical downscaling is based on sta-
tistical relationships linking regional climate variables (predictands)
to large-scale atmospheric variables (predictors). Such links are deter-
mined during an observational period, tested with independent data
outside this period, and used for computing future climate projections.

In this study canonical correlation analysis (CCA) is applied, associ-
ated with a data pre-filtering obtained by a principal component analy-
sis (PCA) (von Storch and Zwiers, 1999). CCA belongs to the class of
direct methods, i.e. methods directly applied to seasonal or monthly
indices, so differing from other methods that are focused on the mod-
elling of daily data, from which seasonal or monthly averages are com-
puted in a second step. In the CCA technique, a regional scale field (e.g.
precipitation) – the predictand – is derived by a large scale field (e.g.
SLP) – the predictor – through a set of linear statistical relationships.
The linearity is a basic assumption of CCA. Further, a stationarity
hypothesis is given by assuming that the linear correlation between
predictors and predictands, which is found in the observational period,
is valid also in the future scenario provided by the runs of the GCM. The
calibration of the CCA model is obtained by searching the most corre-
lated couples of patterns, the canonical patterns (CP), made up of a
vector for the predictor and another for the predictand. It is important
to note that CCA must be applied to the difference between real obser-
vations and their time averaged value. In this study we adopt the sea
level pressure (SLP) or the 1000 hPa temperature (T1000) as large
scale predictor, and monthly average of number of consecutive dry days
and monthly average of number of consecutive wet days, precipitation,
or maximum and minimum temperature as predictand. Moreover, we
decided to put to zero the negative precipitation values in order to give
a physical meaning to the CCA predictions. 

A validation of the statistical model was done by splitting the histor-
ical time series into two periods. We use the first period as the training
series, in order to build the statistical model, and the second one as the
validation one. The first period was chosen considering the period cov-
ered by predictands and making some tests to have the best statistical
model. Whereas the downscaling of all variables is done on a monthly
basis to increase the statistical consistency, the output analysis is sea-
sonal where winter (DJF), spring (MAM), summer (JJA) and fall
(SON) seasons are defined by grouping months from December to
February, March to May, June to August and September to November,
respectively. In Table 1 the training and validation periods are reported
for each predictand.

Agreement between the original data and the predicted ones during
the validation period is used to assess the quality of the methods. For
this purpose, we have computed the mean relative error and the
Spearman correlation coefficient between the historical experimental
data and the validation series (von Storch and Zwiers, 1999). The mean
relative error in the prediction during the validation period is defined
as s / r–, with

(1)

where N denotes the number of stations in each area, t the number of
time steps in the validation period, and Yj(i) and Y

~
j (i) represent the

CRU and downscaled precipitation (at point j and time i), respectively
(s2 is the mean squared error as discussed in Von Storch and
Zwiers,1999, pag. 396. Here it is divided by the mean observed value r–,

thus obtaining a relative error). The Pearson correlation coefficient
was also evaluated. This is defined as:

(2)

with

Y
~
j (i) = y

~
j(i) – y–j(i) (3)

Yj(i) = yj(i) – y–j (i) (4)

being y–j (i) the time average value of the predictand corresponding to
the j-th station. The Spearman correlation coefficient is obtained by
substituting, in Eq. 2, the predictand values Yj(i) with the correspon-
ding ranks Rj(i), that is, the number of data with a value greater than
Yj(i) itself. In other terms, the Spearman correlation coefficient is the
Pearson coefficient between ranked variables. At variance with
Pearson, the Spearman correlation is used as a nonparametric test.
This means that a perfect Spearman correlation follows when X and Y
are related by any monotonic function. On the contrary, the Pearson
correlation only gives a perfect value when X and Y are related by a lin-
ear function. The correlation gives a good validation of the inter-annu-
al variability, independently of any bias or incorrect variance. Modelling
the inter-annual variability is particularly important as it indicates that
the models are correctly reproducing the predictor predictand relation-
ships and it is well known that a basic assumption of statistical down-
scaling models is that the predictor-predictand relationships remain
stationary under different future climate conditions. 

In Table 2 the results for the mean relative error (MRE=s / r–),
described in Eq. 1, and the Spearman correlation coefficients are
shown. The Pearson coefficient is not reported, as it is very similar to
the Spearman, with the exception of WET and DRY, where significant-
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Table 1. Training and validation periods for each predictand.

Training Validation

Precipitation, Wet and dry 1935-1969 1970-2003
T-max and T-min 1951-1992 1993-2005

Table 2. Mean relative error and Spearman coefficient for each
predictand and season.

Precipitation T-max T-min Wet Dry

DJF
MSE 0.29 0.10 0.41 0.19 0.26
Spearman 0.37 0.61 0.44 0.22 0.41

MAM
MSE 0.32 0.08 0.18 0.19 0.47
Spearman 0.44 0.89 0.90 0.21 0.35

JJA
MSE 0.41 0.05 0.06 0.31 0.46
Spearman 0.56 0.83 0.87 0.29 0.42

SON
MSE 0.28 0.06 0.11 0.20 0.39
Spearman 0.43 0.96 0.91 0.23 0.55

DJF, winter; MAM, spring; JJA, summer; SON, fall; MSE, mean relative error. 
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ly better values are found for the latter coefficient, probably a conse-
quence of the particular definition of WET and DRY indicators. The
table shows that a better agreement (lower mean relative error and
higher Spearmann correlation) between modelled and observed data is
obtained for temperatures and, in minor way, for precipitation. The dif-
ferent seasons show a similar behaviour, apart from a lower correlation
and higher error in temperature (especially in Tmin) in DJF, and a larg-
er RMSE in precipitation in JJA.

Dynamical downscaling
The dynamical downscaling simulations are carried out with the

regional climate model RegCM (Giorgi et al. 1993a,b) driven at the
boundaries by fields from the ECHAM5 GCM output (Roeckner et al.,
2003) for two 30-year periods starting on 1st January 1961 and 1st

January 2071, respectively. RegCM is a primitive equation, hydrostatic,
compressible, sigma-vertical coordinate model. Version 3 of the model
is used in this study. It includes a number of parameterization
schemes, like the convective (Pal et al., 2000) and large-scale (Grell,
1993) precipitation schemes, the land surface and ocean flux schemes
(Dickinson et al., 1993). The radiative transfer package and planetary
boundary layer scheme are still essentially those described by Giorgi
and Mearns (1999). The model is implemented on a rotated grid of 100
by 75 points centered on 40° N-15° E, the horizontal resolution is 55.5
km and the model domain covers the central and southern European
region and adjacent oceans, including all the Mediterranean sea. The
vertical grid is composed of 18 unequally spaced levels, the higher res-
olution being close to the surface and in the boundary layer. The model
needs initial and boundary conditions for geopotential, temperature,
humidity and horizontal wind components in the atmosphere and sea
surface temperature. The data to drive the regional model are produced
by the 5th generation of the ECHAM general circulation model. The
same model is also used to provide the future scenario conditions to
the statistical downscaling. ECHAM5 is implemented on a linear
Gaussian grid corresponding to the spectral truncation T63 (1.875
degrees) and 31 vertical levels. It is coupled with the MPI-OM1 ocean
general circulation model, that is the next generation of the HOPE
model (Marsland et al., 2003), running at 1.5 degrees with 40 vertical
levels. Flux adjustment is not adopted in the coupled runs. The data
produced for the Fourth IPCC Assessment Report are downloaded from
the CERA WWW-Gateway of the Hamburg World Data Center for
Climate (http://cera-www.dkrz.de/). For each scenario (Nakicenovic,
2000) 3 different runs are available. The first run corresponding to sce-
nario 20C3M is used for the simulation of recent climate (1961-1990
period), while the first runs of the SRESA2 and SRESB1 scenarios are
used for the two time slices (2071-2100 period).

Results and discussion
Comparison of dynamical and statistical downscaling 
for the period 1961-1990

Hereafter, we perform a statistical comparison between (dynamical
and statistical) downscaled data and observations for each station and
for the period 1961-1990 (CTR). Comparison is performed applying the
Mann-Whitney test to the datasets. The Mann-Whitney test is a non-
parametric test for assessing whether two independent samples of data
come from the same distribution. This is inferred by computing an
index, obtained by comparing the ranks of the two samples. The proba-
bility that the two samples come from the same distribution increases
as this index decreases, so that it is possible to choose a threshold
value below which the two samples can be considered significantly sim-
ilar. In Table 3 the results for the Mann-Whitney test are reported. The
samples are considered to come from the same distribution when the

index is below 1.645, and in this case the value is written in italic. Table
3 shows good results for spring, the most important season for agricul-
ture, in particular both statistical and dynamical models represent well
the statistical properties of precipitation, one of  the most crucial vari-
able for the growth of crops. Regarding the other seasons and variables,
the agreement is not so good for both models. In winter we can infer
from Table 3 that, regarding precipitation, the statistical model is more
representative of the observations with respect to the dynamical model.
One way to visualize and compare data from non-gaussian distribu-
tions is to compute median and percentiles and to plot these values
through a box-plot. Figure 4 shows box-plots for precipitation, maxi-
mum and minimum temperatures, consecutive wet and dry days, com-
paring statistical model data, dynamical model data and observation
data. The lower and upper lines of the box are the 25th and 75th per-
centiles of the sample. The distance between the top and bottom of the
box is the interquartile range. The line in the middle of the box is the
sample median. If the median is not centered in the box, that is an indi-
cation of skewness. The lines extending above and below the box show
the extent of the 95% of the sample. The plus signs are an indication of
outliers, data out of the 95th percentile of the sample. Box-plots confirm
that the best agreement between models and observed data is in spring,
while the largest precipitation discrepancies are in summer. About the
different parameters: 
• both models generally underestimate precipitation; 
• the discrepancy is generally small, but it is larger for the dynamical

downscaling and in JJA;
• the dynamical downscaling overestimates the number of consecutive

wet days, apart from JJA;
• the statistical downscaling overestimates the number of consecutive

dry days, especially in summer;
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Table 3. Mann-Whitney test for each season and applied to observa-
tion and respectively to statistical and dynamical model.

Season Model Precipitation T-max T-min Wet Dry

DJF Dynamical 3.36 1.43 2.71 6.06 6.20
Statistical 1.53 5.12 0.78 0.54 4.47

MAM    Dynamical 1.15 0.05 2.71 5.69 4.63
Statistical 0.10 1.75 0.39 1.94 2.62

JJA    Dynamical 4.82 3.66 0.02 0.79 0.14

Statistical 4.15 6.14 0.76 2.76 5.15
SON Dynamical 3.16 1.75 2.09 3.84 2.26

Statistical 2.28 1.69 2.00 1.09 3.33
DJF, winter; MAM, spring; JJA, summer; SON, fall. 

Table 4. Comparison dynamical-statistical (CTR, 1961-1990).

Precipitation T-max T-min Wet Dry

DJF
MSE 0.38 0.23 0.25 0.52 1.45
Spearman 0.42 0.56 0.50 0.28 0.34

MAM
MSE 0.35 0.07 0.16 0.58 0.87
Spearman 0.65 0.91 0.89 0.32 0.29

JJA
MSE 1.12 0.13 0.07 0.34 0.54
Spearman 0.39 0.61 0.63 0.10 0.30

SON
MSE 0.56 0.10 0.13 0.55 0.74
Spearman 0.35 0.90 0.89 0.43 0.30

DJF, winter; MAM, spring; JJA, summer; SON, fall; MSE, mean relative error. 

Non
-co

mmerc
ial

 us
e o

nly



[page 8] [Italian Journal of Agronomy 2012; 7:e2]

• maximum and minimum temperatures are generally well repro-
duced, apart from a reduced interannual variability of the maximum
temperature by the statistical model.
Finally, a comparison in terms of Spearman correlation and RMSE

between statistical and dynamical models is shown in Table 4.
Correlations between models are better for temperature, especially in
MAM and SON; for precipitation the best agreement occurs in MMA,
while MSEs are generally high and correlations low for the number of
consecutive wet and dry days.

Comparison of dynamical and statistical downscaling,
scenario A2 and B1

The results of downscaling for A2 scenario are shown in Figures 5, 6
and 7, relative respectively to precipitation, maximum and minimum
temperatures. While Figure 5 does not show any significant trend for
precipitation in any month, Figures 6 and 7 show an increase in both
maximum and minimum temperatures, that is particularly clear in
Summer and for the dynamical downscaling. For what concerns A2 sce-
nario, Table 5 shows that both downscaling methods have a pretty good
correlation and low relative error for temperature, apart from DJF,
while for precipitation  the correlation is better for DJF as compared to
the other months. Similar results can be inferred from Table 6 for B1
scenario.

The results of the Mann-Whitney test, applied to compare scenarios
(2071-2100) with CTR period (1961-1990), are shown for A2 and B1
scenarios in Tables 7 and 8, respectively. In italic values greater than
1.64, meaning that the samples are considered to come from different
distributions (trend). For A2, Table 7 confirms Figure 5, in fact precip-

itation does not show any significant trend in any season. A significant
trend for maximum and minimum temperatures is present only for
dynamical downscaling in winter and spring, whereas both methods
display the same behaviour (trend) in summer and fall. For the num-
ber of consecutive wet and dry days, the distribution is the same as the
control run (no trend)  in SON and, mostly, in DJF and MAM. Similar
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Table 7. Mann-Whitney between A2 scenario and CTR for
dynamical and statistical model and for all seasons.

Season Model Precipitation T-max T-min Wet Dry

DJF
Dynamic 0.11 5.20 5.69 0.55 1.20
Statistical 1.25 0.14 0.33 1.33 2.14

MAM
Dynamic 0.39 2.27 3.32 3.01 0.57
Statistical 0.07 0.57 0.82 1.15 0.86

JJA
Dynamic 1.03 4.92 5.52 1.95 2.76
Statistical 1.07 6.53 4.75 3.75 2.53

DJF, winter; MAM, spring; JJA, summer; SON, fall; MSE, mean relative error. 

Table 8. Mann-Whitney between B1 scenario and CTR for
dynamical and statistical model and for all seasons.

Season Model Precipitation T-max T-min Wet Dry

DJF
Dynamic 0.32 5.02 5.12 0.49 1.12
Statistical 1.29 0.21 0.39 1.23 1.96

MAM
Dynamic 1.63 2.66 3.26 2.92 0.58
Statistical 0.33 0.11 0.86 1.12 0.83

JJA
Dynamic 2.02 3.76 4.95 1.96 2.06

Statistical 2.48 6.12 4.13 3.07 2.85
SON

Dynamic 0.11 1.68 2.70 0.13 0.46
Statistical 1.19 3.27 3.27 0.38 1.01

DJF, winter; MAM, spring; JJA, summer; SON, fall. 

Table 5. Comparison dynamical-statistical, A2 scenario. Mean
relative error and Spearman correlation coefficient.

Precipitation T-max T-min Wet Dry

DJF
MSE 0.36 0.09 0.30 0.54 1.62
Spearman 0.60 0.45 0.41 0.33 0.32

MAM
MSE 0.42 0.13 0.21 0.37 0.75
Spearman 0.42 0.57 0.79 0.32 0.32

JJA
MSE 2.50 0.07 0.07 0.54 0.36
Spearman 0.22 0.75 0.72 0.14 0.16

SON
MSE 0.80 0.10 0.10 0.44 0.62
Spearman 0.25 0.81 0.89 0.33 0.22

DJF, winter; MAM, spring; JJA, summer; SON, fall; MSE, mean relative error. 

Table 6. Comparison dynamical-statistical, B1 scenario. Mean
relative error and Spearman correlation coefficient.

Precipitation T-max T-min Wet Dry

DJF
MSE 0.34 0.11 0.30 0.48 1.61
Spearman 0.68 0.32 0.41 0.20 0.22

MAM
MSE 0.44 0.10 0.19 0.52 0.73
Spearman 0.49 0.79 0.91 0.25 0.31

JJA
MSE 2.38 0.09 0.06 0.42 0.35
Spearman 0.27 0.74 0.74 0.30 0.43

SON
MSE 0.77 0.10 0.11 0.49 0.59
Spearman 0.17 0.83 0.92 0.43 0.15

DJF, winter; MAM, spring; JJA, summer; SON, fall; MSE, mean relative error. 

Figure 4. Box-plot for Capitanata region. The considered period
is 1961-1990. From the top to the bottom: precipitation, maxi-
mum temperature, minimum temperature, number of consecu-
tive dry days, number of consecutive wet days.
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results are shown in Table 8 for B1 scenarios, except for precipitation
in JJA (P values greater than 1.64).  

The results in terms of box-plots for the two scenarios are shown
respectively in Figures 8 and 9. For A2 scenario, the main results in
Figure 8 are:
- an increase in summer precipitation predicted by the statistical

method, due to an increase in the number of consecutive wet days; 
- both downscaling techniques predict an increase in the number of

dry days in summer. Thus, according to statistical downscaling,
summer in A2 is characterised by an alternative presence of per-
sistent anticyclonic conditions, associated with drought, and long
periods of rainfall, probably associated with local thunderstorms;

- an increase in temperatures, that is particularly apparent for the
minimum temperature and in summer and fall.

For B1 scenario, a similar trend emerges for temperatures, while the
increase in rainfall amount and in the number of consecutive wet days
is no more present in summer. Also, only the dynamical downscaling
predicts an increase of drought periods.

The monthly cycle of temperatures and precipitation for A2 is shown
in Figure 10. The dynamical downscaling predicts a generalised
increase of temperatures and a decrease in precipitation in each sea-
son apart from winter. The statistical method predicts an increase in
precipitation from May to September and a decrease in the other
months and a warmer scenario in summer and fall, while there is no
clear trend for temperatures in the other seasons. Figure 11 shows that
the results are similar for B1 scenario, but the trends are smaller as
compared to A2 scenario.
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Figure 5. Temporal series of precipitation from statistical and
dynamical model and for CTR and A2 scenario. 

Figure 6. Temporal series of maximum temperatures from statisti-
cal and dynamical model and for CTR and A2 scenario.

Figure 7. Temporal series of minimum temperatures from statisti-
cal and dynamical model and for CTR and A2 scenario.

Figure 8. Box plots for precipitation, maximum and minimum
temperature, for CTR and A2 scenario, for both statistical and
dynamical model.
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Conclusions 

In this paper, two downscaling models have been applied to produce
future scenarios in a sub-region of agricultural interest in South Italy
(Capitanata plain in Apulia region): a statistical downscaling model
(CCA) and a dynamical downscaling model (RegCM). The A2 and B1
emission scenarios were used. The work has been carried out in the
framework of the Italian Research Project Evolution of cropping sys-
tems as affected by climate change (CLIMESCO). The main goal was to
perform an impact study on the role of climate change in future crop-
ping systems.  

Then, the evaluation of climate change starting from the available
global simulations, associated with given emission scenarios, has been

carried out. A set of stations with monthly data of precipitation and one
station with daily data of temperature were available in the Capitanata
plain. These data were used as predictands in the statistical model.
Haylock et al. (2006) highlighted the importance of comparing differ-
ent types of downscaling models to generate reliable future climate-
change projections at the local scale. In fact, they noticed that the dif-
ferences between different downscaling models are at least as large as
the differences between different scenarios. As a consequence, they
suggest to include different types of downscaling (dynamical and sta-
tistical) models and emission scenarios when developing climate-
change projections at the local scale. Also, they found that all the differ-
ent models they used perform better in winter than in summer. 

The latter result is consistent with the present work; in fact, in our
study the skill of both statistical and dynamical downscaling models is
much worse in summer than in winter.  This result could be related to
a much lower intensity of rainfall in Summer than in the other seasons,
due to very long dry periods. Consequently, the relevance of the rainfall
future trends in Summer is probably not really significative. Also, it
must be stressed that the dynamical models have a tendency to signif-
icantly underestimate the rainfall, especially in summer (as shown in
Figure 4). This can be probably ascribed to the limitations in numeri-
cal models, that cannot properly represent convective rainfall. In fact,
they can only parameterise this type of precipitation, that prevails dur-
ing summer. This limitation can significantly affect the triggering and
development of convection especially in a coarse resolution model,
such as GCM's but also RCM's at the resolution actually used for cli-
mate simulations. Also, Capitanata sub-region is in the proximity of
Gargano, a 65 km long and 40 km wide promontory, high more than
1000 m, and in its western side borders Appennines. As a consequence
of the rough representation of the orography in a coarse numerical
model,  the airflow over and around the orographic obstacles cannot be
properly represented and the intensity of the rainfall can be significant-
ly affected.

The differences between downscaling models and emission scenar-
ios are considered as an important source of uncertainty. However, it is
nowadays recognized that GCM data are still the largest source of
uncertainty in regional climate-change projections (Giorgi et al., 2001;
Prudhomme and Davies, 2009a,b). In fact, the greatest contribution to
the uncertainty in impact studies was found to be related to GCM's,
while scenarios and downscaling models give smaller contributions,
and impact model uncertainty is found to be of the same magnitude as
the natural climate variability (Arnell, 2004). This means that the pres-
ence of biases in the downscaled variables is mainly associated with
biases in the GCM outputs. As an example, it is well known that GCM's
display the SLP field problem (Trigo and Palutikof, 2001), i.e. the aver-
age mean sea level pressure observed in the actual climate (e.g., 1961-
1990) is not yet well reproduced by GCM's in the control run. Thus, our
analysis is potentially affected by this problem. In particular, there is a
tendency to overestimate the pressure difference between the Azores'
high and the Iceland low, leading to serious doubts about the capacity
of GCM's to simulate precipitation properly. As a consequence, all
GCM's show deficiencies in reproducing the current seasonal pattern
of the rainfall. From downscaling techniques perspective this is a very
serious problem, because precipitation over Europe is strongly correlat-
ed to the difference between Azores' high and Iceland low (linked to the
NAO index). A wrong SLP mean field would prevent the statistical
downscaling from computing the correct mean precipitation.

Outputs from statistical and dynamical downscaling models  can be
used directly input into a crop model (Mearns et al.,1999). An intercom-
parison between different methods and different scenarios allows to
estimate the uncertainties of future projections of the climate vari-
ables. However, crop production is a function of dynamic, nonlinear
interactions between weather, soil water and nutrient dynamics, man-
agement and physiology of the crop; thus it is not straightforward to
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Figure 9. Box plots for precipitation, maximum and minimum
temperature, for CTR and B1 scenario, for both statistical and
dynamical model.

Figure 10. From the top to the bottom the annual cycle for precip-
itation, maximum and minimum temperatures, for A2 scenario
and CTR and both statistical and dynamical models. 

Figure 11. From the top to the bottom the annual cycle for precip-
itation, maximum and minimum temperatures, for B1 scenario
and CTR and both statistical and dynamical models.
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relate predicted climatic variations (averaged in time and space) to
crop response, that is  nonlinearly, and sometimes non-monotonically,
dependent on a realistic range of environmental variability.
Furthermore, crops do not respond to conditions averaged through the
growing season. To capture the dynamic, nonlinear interactions
responsible for the crop production, process-oriented crop simulation
models typically operate on a daily time step and on a spatial scale of a
homogeneous plot (although sampling the heterogeneity of soil, weath-
er and management inputs allows simulated results to be interpreted
over a range of scales). To overcome this problem, when daily in situ
data are available for a long period (minimum 30 years) a weather gen-
erator (Semenov et al., 1998; Richardson, 1981; Onof et al., 2000) can
be applied to the output of both statistical and dynamical models. A
weather generator is able to simulate site-specific daily weather data.
In the framework of the project Evolution of coltural systems as a con-
sequence of climate changes (CLIMESCO), the stochastic weather gen-
erator LARS-WG (Semenov et al., 1998) was used: the output from the
statistical downscaling model provided the climatological input for a
crop model in order to reproduce the evolution of the crop systems in
the Capitanata plane. 

The details of the study performed with the LARS-WG model are out
of the purposes of this paper and will be the subject of a forthcoming
study.
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