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Abstract

Extreme events, such as wave-storms, need to be characterized for coastal infras-
tructure design purposes. Such description should contain information on both
the univariate behaviour and the joint-dependence of storm-variables. These
two aspects have been here addressed through generalized Pareto distributions
and hierarchical Archimedean copulas. A non-stationary model has been used
to highlight the relationship between these extreme events and non-stationary
climate. It has been applied to a Representative Concentration pathway 8.5
Climate-Change scenario, for a fetch-limited environment (Catalan Coast). In
the non-stationary model, all considered variables decrease in time, except for
storm-duration at the northern part of the Catalan Coast. The joint distribu-
tion of storm variables presents cyclical �uctuations, with a stronger in�uence
of climate dynamics than of climate itself.
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generalized Pareto distribution, non-stationarity, generalized additive model

1. Introduction1

Extreme events characterization is a key piece of information for an e�cient2

design and construction of any coastal infrastructure. Natural extreme events,3

such as hurricanes, tsunamis or earthquakes, can lead to considerable economic4

losses (Shi et al., 2016). From all these hazards, marine storms cause most of5

the damage to non-seismic coasts. This situation may eventually be aggravated6

as a consequence of Climate-Change, which a�ects the intensity and frequency7

of extreme wave-conditions (Wang et al., 2015; Hemer and Trenham, 2016).8

Changes in climate can a�ect several coastal hazards: �ooding (Hinkel et al.,9

2014; Wahl et al., 2016), erosion (Hinkel et al., 2013; Casas-Prat et al., 2016; Li10
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et al., 2014), harbour agitation (Sánchez-Arcilla et al., 2016; Sierra et al., 2015)11

and overtopping (Sierra et al., 2016). A robust statistical characterization of12

storms is, thus, required to assess coastal risks and to forecast storm impacts13

(Sánchez-Arcilla et al., 2014; Gràcia et al., 2013). The stationary climate as-14

sumption, common approach in the last decades for designing infrastructures,15

does no longer hold valid in a context of Climate-Change. Hence, there is16

a pressing urge for methodologies that consider non-stationarity, not only in17

trends, but also in higher statistical moments such as variance.18

Usual statistical distributions for extremes such as the Generalized Pareto19

Distribution (GPD) or the Generalized Extreme Value distribution have three20

parameters: location, scale and shape. Rigby and Stasinopoulos (2005) pro-21

posed a generalized additive model for these three parameters to predict river22

�ow-data from temperature and precipitation on the Vatnsdalsa river (Iceland).23

Yee and Stephenson (2007) developed a methodology that allows extreme value24

distributions to be modelled as linear or smooth functions of covariates. One of25

the examples they presented was the modelling of rainfall in Southwest England.26

Du et al. (2015) carried out frequency analyses using meteorological variables,27

where they tested several combinations of co-variates with generalized additive28

models for location, scale and shape, and concluded that meteorological co-29

variates improve the characterization of non-stationary return periods. Méndez30

et al. (2007) used a time-dependent generalized extreme value distribution to �t31

monthly maxima series of a large historical tidal gauge record, allowing for the32

identi�cation and estimation of time scale such as seasonality and interdecadal33

variability. Méndez et al. (2008) extended the former methodology to signi�cant34

wave-height, while considering the e�ect of storm duration.35

For design purposes, the most analysed variable in marine storms is the sig-36

ni�cant wave height (Hs), usually considered to be independent from other wave37

storm-components such as peak-period (Tp), or storm-duration (D). Neverthe-38

less, these variables are known to be semi-dependent (De Michele et al., 2007).39

Univariate analyses on singular variables, such as Hs, cannot thus describe40

coastal processes adequately (Salvadori et al., 2014), leading to misestimation41

of coastal impacts and risks.42

The relationship among storm variables can be modelled with statistical43

techniques such as parametric probability distributions (Ferreira and Soares,44

2002), asymptotic theory (Zachary et al., 1998), joint modelling (Bitner-Gregersen,45

2015), or copulas (Genest and Favre, 2007; Trivedi and Zimmer, 2007), among46

other techniques. Copulas were proposed by Sklar (1959), and have recently at-47

tracted attention from coastal engineers (Corbella and Stretch, 2012; Salvadori48

et al., 2015). Wahl et al. (2011) applied fully nested Archimedean copulas to49

wave storms o� the German coast. They �rst characterized the highest energy50

point and its intensity and then incorporated the signi�cant wave height. Com-51

plementary to these methodologies, Gómez et al. (2016) has implemented a time52

varying copula to analyse the relationship between air temperature and glacier53

discharge, which is non-constant and non-linear through time. In this case, both54

marginal and copula parameters depend on time, and a full Bayesian inference55

has been applied to obtain these parameters.56
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Based on this, the present work characterizes the extreme wave climate57

under a Representative Concentration Pathway 8.5 Climate-Change scenario58

(RCP8.5, i.e. an increase of the radiative forcing values by year 2100 relative59

to pre-industrial values of 8.5W/m2; Stocker et al. (2013)) for a fetch-limited60

environment (Catalan coast). The study is based on a set of geographical nodes61

which are equidistant along the Catalan coast. Only eleven nodes out of the62

total twenty-three are used in this paper, since they represent well the main63

features and spatial variability of the storm distributions (see Fig. 1, red trian-64

gles). Two of the eleven nodes are in intermediate waters, while the rest are in65

deep waters. The subsequent analysis is performed assuming, �rst, stationary,66

and then, transient conditions.67

Section 3 describes the methodology and the theoretical background. Section68

2 presents the study area. Section 4 lists main results, which are discussed in69

Section 5. The conclusions are summarized in Section 6.70

2. Study area71

The Mediterranean Sea (see Fig. 1) is a semienclosed basin, constrained by72

the European, Asian and African continents. It has a narrow connection to the73

Atlantic Ocean (Gibraltar Strait), as well as an access to the Black Sea. In74

terms of waves, the Mediterranean Sea can be splitted into di�erent partitions75

(Lionello and Sanna, 2005). This paper deals with the Catalan coast, which can76

be found at the northwestern Mediterranean sector. This area has, as its main77

morphological features, a) mountain chains which run parallel and adjacent to78

the coast, b) Pyrenees Mountains to the north, and c) the Ebre river valley to79

the south. These orographic discontinuities, along with the major river valleys,80

serve as channels for the strong winds that �ow towards the coast (Grifoll et al.,81

2015).82

The most frequent and intense wind in the Catalan Coast is the Tramuntana83

(north), appearing in cold seasons. It is the major forcing for the northern84

and central Catalan Coast waves. However, from latitude 41◦N southward, the85

principal wind direction is the Mistral (northwest), which is formed by the winds86

that �ow downhill the Pirinees or between the gaps of the mentioned mountains.87

A secondary wind, the Ponent (west), comes from the depressions in northern88

Europe. It is the second most frequent one, with limited intensity. Eastern89

winds are the ones with larger fetch for intense sheer stress, corresponding to90

low pressure centres over the northwestern Mediterranean. During the summer,91

there are southern sea-breezes and estern winds, triggered by an intense high-92

pressure area on the British Islands.93

The northwestern Mediterranean Sea is a fetch-limited environment, pri-94

marily driven by wind-sea waves (Bolaños et al., 2009; Sánchez-Arcilla et al.,95

2016). The distance that waves travel, from the storm genesis to the Catalan96

Coast, is at most one-sixth that of a wave that reaches the Atlantic European97

coasts (García et al., 1993). Therefore, the corresponding wave-periods, in the98

northwestern Mediterranean, are much shorter.99
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The present climate presents a mean signi�cant wave height Hs of 0.72m100

from Barcelona City nortward, and 0.78m southward. Maximum Hs ranges101

between 5.48m in the southern coast to 5.85m at the northern coast (Sánchez-102

Arcilla et al., 2008; Bolaños et al., 2009). Casas-Prat and Sierra (2013) pro-103

jected future wave climate at the Catalan Coast through Regional Circulation104

Model outputs from the A1B scenario (IPCC, 2000) for the time-period com-105

prising 2071-2100. Their results showed a variation compared to present of the106

signi�cant wave height around ±10%, whereas the same variable for a 50year107

return-period exhibits rates around ±20%.108

3. Proposed methodology109

The methodology here developed leads to a robust assessment of storm pres-110

sures under present or future climates. Regional projections are obtained from111

a deterministic approach, based on the underlying physics, avoiding the compu-112

tationally expensive dynamical downscaling and the oversimpli�cation of con-113

ventional empirical downscaling. Wave storms are �rst characterized assuming114

stationarity (see Fig. 2). From here, the joint probability structure is derived115

and this will serve as a basis for the non-stationary model of the selected projec-116

tion (in this case, under the RCP 8.5 scenario). A non-stationary model is then117

built, and constitutes the main part of the proposed methodology, described118

below.119

3.1. Data and storm components120

The analysis has been performed considering the wave-climate at the Cata-121

lan Coast under a RCP 8.5 Climate-Change scenario. This scenario considers a122

CO2 concentration in the atmosphere close to 1250ppm in 2100, which is dou-123

ble that of any other scenario in the Fifth Assessment Report (Stocker et al.,124

2013). The modelling chain comprises the CMCC-CM (Scoccimarro et al., 2011)125

Global Circulation Model (see Table 1), providing boundary conditions for the126

Regional Circulation Model COSMO-CLM (Rockel et al., 2008). The statistical127

model derived from the CMCC-CM dynamical downscaling has been validated128

with a total of eighteen Global Circulation Models, shown in Table 1. This list129

includes models from the same experiment (CMIP5, Taylor et al. (2012)) and130

from the same Climate-Change-scenario (RCP 8.5), covering, thus, a compre-131

hensive range of predictors. The COSMO-CLM grid, that has a resolution of132

0.125◦×0.125◦, spans the whole Mediterranean region. The next step consists of133

the WAM (WAMDI Group et al., 1988) wave model, where the just mentioned134

wind �elds serve as an input, for the same domain and spatial resolution. The135

projections considered in all three models (Global Circulation Model, Regional136

Circulation Model and WAM), span the interval from year 1950 to 2100.137

The nodes considered for the AR5 projections and subsequent analyses (Fig.138

1, red triangles) are combined with buoy and SIMAR (Gomez and Carretero,139

2005) hindcast points (green rhombuses and black dots, respectively) for valida-140

tion purposes. All selected nodes (except 1 and 16) are located in deep waters,141
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and thus the WAM model is a suitable option (Larsén et al., 2015). The ap-142

plication of this code to nodes 1 and 16, in intermediate waters, may present143

certain limitations and would, thus, require further exploration and research.144

The validation dataset comes from SIMAR hindcasts and Puertos-del-Estado145

buoy records, corresponding to the period 1990 to 2014. Storms here are clus-146

tered into storm-years. Storm-years (called �years�, hereafter), which are periods147

of 12 months, from 1st July to 30th June of the next year.148

Four main variables have been selected to describe the storm-intensity con-149

ditions: storm energy (E), signi�cant wave-height at the storm-peak (Hp), peak150

wave-period at the storm-peak (Tp), and duration (D). The E and D are aggre-151

gated parameters, related to the total impact of the storm, whereas Hp and Tp152

represent the maximum intensity of the event. E, Hp, Tp and D take positive153

real values and, consequently, they have been log-transformed to avoid scale154

e�ects (Egozcue et al., 2006).155

3.2. Pre-analysis (stationarity assumption)156

Prior to the actual modelling, an explanatory analysis has been carried out157

with the available wave data. A set of stationary models has been built by158

selecting equidistant time slices from the total sample, following previous work159

by other authors with similar hydrodynamic variables (Muis et al., 2016; Vous-160

doukas et al., 2016). The three time-frames are labelled as: (i) past (PT,1950-161

2000); (ii) present-near-future (PRNF, 2001-2050), and far future (FF, 2051-162

2100). Storms have been de�ned using a stationary Hs threshold of 2.09m163

signi�cant wave-height, based on previous work (Lin-Ye et al., 2016). Although164

the time period in Lin-Ye et al. (2016) is signi�cantly shorter than in the present165

paper, this threshold should be acceptable for the three time-frames as it falls on166

the linear part of the excess-over-threshold plot (Fig. 3), according to method-167

ology previously developed by Tolosana-Delgado et al. (2010).168

The next step of the pre-analysis consisted in building dependograms of the169

selected storm variables, which were then visually inspected for non-stationary170

behaviour. Each variable is also presented in absolute concentration curves171

(ACC), where ACC1 indicates the ratio of q50 at a given time-frame, to the172

one in the PT inteval (Yitzhaki and Olkin, 1991). ACC2 denotes the same173

ratio, but with (q75 − q50). Thus, ACC1 represents on changes in the mean,174

whereas ACC2 re�ects on the evolution of the variance. This analysis has been175

performed for the energy and duration of the total events of a storm-year, Eyear176

and Dyear, as well as the mean Hs and Tp of a storm-year, Hs,year and T p,year,177

to assess non-stationary trends.178

3.3. Stationary model179

The probability distribution of each storm variable is �t by a GPD. Being180

Y = X − x0 the excess of a magnitude X over a location-parameter x0, condi-181

tioned to X > x0, the support of Y is [0 , ysup] (Coles, 2001). ysup is the upper182

5



bound of the GPD. The GPD cumulative function is, then,183

FY (y|β, ξ) = 1−
(
1 +

ξ

β
y

)− 1
ξ

, 0 ≤ y ≤ ysup, (1)

where β ≥ 0 is the scale parameter and ξ ∈ R is the shape parameter. As a184

�rst approximation, the values of the location parameters x0 obtained in Lin-Ye185

et al. (2016) have also been used in this case. The departure from these values186

is described in Sub-section 4.2.187

The Hierarchical Archimedean copula (HAC) is a �exible tool that describes188

the dependence between variables via the nesting of a subset of 2-D copulas189

(Sklar, 1959; Nelsen, 2007; Okhrin et al., 2013). The Gumbel type HAC with a190

mean aggregation method is selected for this case of extreme events, according191

to Lin-Ye et al. (2016). A d-dimensional Archimedean copula has the form192

C (F;φ) = φ−1 (φ (F1) + · · ·+ φ (Fd)) , F ∈ [0, 1]
d
, (2)

for a given generator function φ. A Gumbel generator has been selected since193

it de�nes the dependence in the upper tail of the probability distribution. Note194

that a family of asymmetric copulas (Vanem, 2016) would include physical lim-195

itations, such as wave steepness, where high Hp cannot commute with large196

Tp. Due to the complexity of non-stationarity, the asymmetric copulas must be197

carefully introduced in a more mature future version of the proposed model.198

The HAC aggregates the Gumbel generator parameters using a series of199

coe�cients called θ, which can be transformed to Kendall's τ (Kendall, 1937;200

Salvadori et al., 2011). τ denotes independence when τ = 0, and total depen-201

dence when τ tends to 1. The goodness-of-�t of the HACs at each time-frame202

has been assessed by using goodness-of-�t plots of the empirical copulas (Lin-203

Ye et al., 2016). The κ2 statistic (Gan et al. (1991)) serves to quantify the204

goodness-of-�t. It takes values in [0, 1], and a perfect �t happens when κ2 = 1.205

According to our experience in the Catalan Coast, the HAC-structure in Fig. 4206

should be applicable to this area. There is another approach for events where207

Hp is less inter-dependent with E and D (Lin-Ye et al., 2016), but this type of208

structure is of less interest in this study, as will be discussed later. The nesting209

levels in Fig. 4 start at the branching of the tree-like structure, and end at the210

top "root" level.211

3.4. Non-stationary model212

Extreme events are scarce by nature. The shorter the time-window con-213

sidered, the smaller will be the available information, with larger uncertainty.214

This assumption means that, for the time-windows of 50years considered in the215

stationary model, there are fewer samples of high extreme events. Hence, the216

probability distribution function's upper tail estimation would not provide re-217

sults reliable enough. Previous studies indicate that Climate-Change also has218

a non-negligible e�ect on extremes (Trenberth and Shepherd, 2015; Hemer and219
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Trenham, 2016; Du et al., 2015), so assumptions such as a stationary storm-220

threshold cannot be adopted. This is a �rst indication that non-stationarity221

needs to be addressed (Vanem, 2015).222

In the non-stationary model, vectorial generalized additive models (VGAM,223

Yee and Wild (1996)) have been used to determine storminess, storm-thresholds224

and GPD parameters (Rigby and Stasinopoulos, 2005; Yee and Stephenson,225

2007). The VGAM consists of a linear function (Fessler, 1991; Hastie and Tib-226

shirani, 1990):227

ηi(j) = β∗1(j) + f2(j) (xi2) + . . .+ fp(j) (xip) , (3)

where ηi(j) is the j
th dependent variable, xi is the i

th independent variable that228

generates ηi. ηi is a sum of smooth functions of the individual covariates β∗1(j)229

and fp(j). In this case, β∗ is not the scale parameter of the GPD. Additive230

models do all the smoothing in R, avoiding the large bias introduced in de�ning231

areas in Rn.232

The mathematical assumptions for regression models are: 1) incorrelation, 2)233

normality, and 3) homoscedasticity of residuals. Assumption 1) is assessed with234

a ACF plot, assumption 2) can be assessed with a Q-Q plot against a N
(
0, σ2

)
235

distribution, where the sample standard deviation is used as σ2. Assumption236

3) can be analysed on a graph of �tted value vs. residuals. When the predicted237

variable is a counting one, a vectorial generalized linear model (VGLM) can be238

adopted (Yee and Wild, 1996). The VGLM is a particular case of VGAM. The239

storminess is a counting variable, and its relationship with any other factor can240

be approximated by a Poisson distribution.241

The storm-threshold is then estimated through a VGAM that approximates242

its relationship with a factor by a Laplace distribution. Once storms are selected,243

their non-stationary GPD location-parameter x0 is estimated through quantile244

regression (Koenker, 2005). The quantile regression is a speci�c type of VGAM,245

and it estimates the 100τ̂% conditional quantile yτ̂ (x) of a response variable Y246

as a function u (x, τ) of covariates x. The equation l∗u = lu+%uRu must then be247

minimized, where lu = τ̂
∑

i:ri≥0
|ri| (1− τ̂)

∑
i:ri<0

|ri| for residuals ri = yi−u (xi, τ̂).248

% is a roughness coe�cient that controls the trade-o� between quality of �t to249

the data and roughness of the regression function; and R is a roughness penalty250

(Northrop and Jonathan, 2011; Jonathan et al., 2013). The above mentioned251

τ̂ has nothing to do with the τ of Kendall. Regarding the rest of the GPD252

parameters: ξ is assumed to remain constant; β is considered to depend on253

co-variates, and is estimated with VGLMs.254

The option of using time as a covariate is examined in the non-stationary255

model, just to assess the evolution of other variables. The predicting function is a256

4-degree spline (Hastie and Tibshirani, 1990). Alternative predictive parameters257

seems to present a greater potential. Climate-indices are eligible candidates258

(Rigby and Stasinopoulos, 2005), for which the linear interpolation function259

has been selected, advocating the principle of parsimony. Possible climate-260

indices are the North Atlantic Oscillation (NAO, Hurrell and Deser (2009)), the261

Easterly Atlantic index (EA, Barnston and Livezey (1987)), the Scandinavian262
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oscillation (SC, Barnston and Livezey (1987)), and their �rst and second time263

derivatives. These climate-indices have been scaled to have a mean value equal264

to zero and a variance equal to unity, and they actually introduce time as an265

implicit covariate. They were computed from the monthly-averaged sea level266

pressure �elds, from the global circulation-model listed in Table 1. In order to267

avoid sudden oscillations that would hinder interpretation, the time series of268

climate-indices have been �ltered with a 2nd order lowpass Butterworth �lter269

(Butterworth, 1930), whose low-pass period was of 10years.270

Di�erent results among global circulation-models should be expected, despite271

the same post-processing treatment for all of them. The grid-size and physical272

implementations are not the same, the model with the highest resolution (0.76◦×273

0.76◦) is CMCC-CM, which is the one that has served as the calibration model.274

There are also slight divergences on how the model addresses the evolution of275

emissions (Friedlingstein et al., 2014).276

Once storms events have been selected, E, D, Hp and Tp can be extracted.277

The e�ect of climate-indices as covariates is assessed at nodes 7 and 21, as these278

nodes represent the most distinct spatial patterns (see Sec. 2 and Fig. 1). The279

goodness-of-�t of the resulting VGAM with di�erent combinations of covariates280

is contrasted with a likelihood-ratio test (LRT, Vuong (1989)), the Akaike infor-281

mation criterion (AIC, Akaike (1987)) and the Bayesian information criterion282

(BIC, Tamura et al. (1991)). A censorship analysis is carried out on the sample283

for these two nodes, corresponding to two subsets of GPDs for: a) onshore winds284

and b) o�shore winds. For the two samples in the censorship analysis, and for285

the combined sample, the proposed model is calibrated with climate-indices de-286

rived from the CMCC-CM global circulation-model. The climate-indices from287

the other eighteen models (Figs. 5, 6, and 7) serve to predict what would be the288

probability distribution functions under a wide range of plausible values. In the289

results and discussion section, the 99th quantile, a common quantile for hazard290

and design (Goda, 2010), has been used to inter compare these.291

VGAM uses, thus, global circulation climate-indices as covariates to create292

time series of 99th quantiles. A way of quantifying how these time series di�er293

from the baseline (CMCC-CM), is by computing the Euclidean distance between294

the estimated partial autocorrelation coe�cients of each time series (Galeano295

and Peña (2000)). This metric takes values in [0, 1] ∈ R, being 0 the shortest296

distance (i.e. closer similarity between models), and 1, the largest one.297

Regarding the joint dependence structure of the proposed model, storms are298

clustered into periods of 15years, under the assumption that there is station-299

arity in these 15years. Because of the persistence of the climate-indices con-300

sidered, this is a plausible hypothesis. 15years are also the shortest time-span301

that provides a su�cient number of storms to determine the HAC structure.302

Larger time-windows would o�er a greater number of storms, but with a non-303

stationary dependence parameter. Non-stationary HAC dependence parame-304

ters are obtained at each node, for this moving time-window of 15years. Each305

time-window overlaps with the former and the following ones, in half-a-year, to306

characterize the non-stationary e�ect.307

The Gumbel HAC dependence structure from the stationary-model is also308
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used in the non-stationary model. Particularly, the HAC-structure in Fig. 4 is309

adopted for the whole non-stationary model. The �tting criteria is the Max-310

imum Likelihood method, where the HAC-structure in the stationary-model311

(see sub-section 3.3) is set as the unique structure for all nodes and for the312

whole simulation period. The selection of only one HAC-structure follows the313

principle of parsimony, being this HAC the one that better characterizes the314

joint-dependence at most spatial nodes during the three time-frames of the sta-315

tionary model.316

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et al.,317

1992) is applied to the dependence-parameters of the HAC, to look into the318

stationarity of the τ time series. The p-value of such test gives the level of319

signi�cance at which the null test cannot be rejected. In other words, on how320

likely the dependence-parameter is actually stationary.321

To represent projected climatology, the probability distribution function of322

the Hp should resemble that of observed storm conditions (from buoys and323

hindcasts). The proposed model has been validated at the nodes listed on Table324

2 (see Figs. 1 for node location), as follows. The SIMAR/buoy data validation325

nodes are denoted:326

{Hp,1, . . . ,Hp,i, . . . ,Hp,n} , i = 1÷ n, n ∈ R, (4)

and the model data (written as H∗p , here)327 {
H∗p,1, . . . ,H

∗
p,j , . . . ,H

∗
p,m

}
, j = 1÷ n, m ∈ R (5)

They are next combined to form a joint dataset:328 {
Hp,1, . . . ,Hp,i, . . . ,Hp,n, H

∗
p,1, . . . ,H

∗
p,j , . . . ,H

∗
p,m

}
Such set is partitioned into four intervals, separated by the quartiles329

{q0, q25, q50, q75, q100}. There are elements from both SIMAR/buoy Hp and AR5330

projections, in each interval. The quartiles are selected as boundaries because331

buoy records are often interrupted due to harsh wave conditions. Then, if the332

selected intervals are too small, some of them might be empty, which would lead333

to indetermination of the distance between model and data.334

Two vectors are de�ned as335

vecobs =

(
q25∑
q0

p (Hp,i) ,

q50∑
q25

p (Hp,i) ,

q75∑
q50

p (Hp,i) ,

q100∑
q75

p (Hp,i)

)
, (6)

and336

vecmodel =

(
q25∑
q0

p
(
H∗p,j

)
,

q50∑
q25

p
(
H∗p,j

)
,

q75∑
q50

p
(
H∗p,j

)
,

q100∑
q75

p
(
H∗p,j

))
, (7)

where vecobs is the vector for observations, and vecmodel is the one for projec-337

tions. Each element of the vector is the summation between two quantiles of338
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the probability distribution function. Therefore, vecobs and vecmodel are com-339

positional data, their elements being parts of a whole (Egozcue and Pawlowsky-340

Glahn, 2011), and ful�lling some other properties de�ned in Aitchison (1982)341

and Egozcue et al. (2003). The distance between these two vectors can be de-342

termined with an Aitchison measure (Aitchison, 1992; Pawlowsky-Glahn and343

Egozcue, 2001),344

d (x,y) =

∣∣∣∣ln x (1− y)

y (1− y)

∣∣∣∣ , x,y ∈ (0, 1) ∈ R, (8)

Where x and y are two compared vectors. Another measure for the distance345

is the Kullback-Leibler divergence (Kullback, 1997)346

DKL (P ‖ Q) =
∑
i

P (i) log
P (i)

Q (i)
. (9)

This function measures the extra entropy of the probability distribution Q of347

the model, with respect to the probability distribution P of the observations.348

Note that for any i, Q (i) = 0, must imply P (i) = 0, to avoid indertemination,349

thus ensuring that the model considers all the values that the observations350

show. Also, whenever P (i) = 0, the contribution of the i-th term is null, as351

lim
x→0

x log (x) = 0.352

Both eq. 8 and 9 are distances, and thus take values in R+
0 . The module of353

the vector is a particular case of both distances (Egozcue and Pawlowsky-Glahn,354

2011), and thus both can be compared to the vectorial module, in Euclidean355

space, of x and y, which should be of order 1.356

4. Results357

4.1. Pre-analysis (stationarity assumption)358

The dependograms, which do not vary for the di�erent time-frames, show359

inter-dependence of Tp and the other variables (E, Hp, D), except at node 1360

in the FF. ACC1 and ACC2 ratios are represented in Figs. 1 to 3 of the Sup-361

plementary material. E and D decrease in PRNF and FF (see Supplementary362

material, Fig. 1). ACC1H,prnf , ACC1H,ff , ACC1T,prnf and ACC1T,ff are363

equal to one for the entire Catalan Coast (�gures not shown). ACC1E,prnf is364

slightly below 1, being specially low in bays or similar local coastal domains.365

ACC1E,ff is approximately 1.05 in the northern sector (Girona). ACC1D,prnf366

and ACC1D,ff are high in apexes like the Creus cape (near node 22), and low367

in bays like the Tarragona one (see Fig. 1). All the ACC2 ratios are slightly368

below one in the PRNF (see Supplementary material, Fig. 2), and get closer to369

one in the FF (see Supplementary material, Fig 3). The temporal evolution of370

Eyear, Hs,year, T p,year and Dyear are presented in Figs. 4 to 7 of the Supple-371

mentary material. The Eyear are only autocorrelated at node 22 and 12, with372

a lag of 9years in PT, and are not autocorrelated for larger lags. Hs,year is au-373

tocorrelated at nodes 6, 12, 16, 17, 20, 22 and 23, at di�erent time-frames, and374
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T p,year is autocorrelated along the entire Catalan coast. Dyear is autocorrelated375

at node 22, in PT, with a lag of 5years, and at node 1 in PRNF, with a lag of376

2years.377

4.2. Stationary model378

After de�ning the GPD parameters x0 and β, each storm-intensity variable379

is �t by a GPD, of discontinuous support. Tp has required an increase of its380

location-parameter (10% in FF, at nodes 20 and 22), before �tting GPD. De-381

pending on location, di�erences may appear within storm-parameters, possibly382

due to wave propagation e�ects and the control of land winds at the northermost383

and southernmost sectors. Unlike for SIMAR hindcasts, the HAC-structure in384

Fig. 4 is the only one present at all nodes and for all time-frames. The goodness-385

of-�t of the HAC are represented in Figs. 8 to 10 of the Supplementary material.386

The k2 parameter and the graph show a good �t of the Gumbel-HAC, as ob-387

served in Lin-Ye et al. (2016).388

4.3. Non-stationary model389

Two di�erent kinds of non-stationary model have been built: a) using time as390

the single covariate (NS-T hereafter); and b) implementing large scale climate-391

indices as covariates (NS-CI hereafter). By using time alone as a covariate to392

storminess, the storm threshold and GPD parameters, whenever NS-T shows a393

clear time-dependent behaviour, the non-stationary model NS-CI is applicable.394

Figures 8, 9, and 10 show the temporal evolution of the HAC dependence-395

parameters for NS-T. The KPSS test (Kwiatkowski et al., 1992) is applied on τ396

for the NS-T model, and the outcome is that the null hypothesis of stationarity397

cannot be rejected in 1− 4% of the cases. That is, τ is highly non-stationary.398

Regarding storminess, the SIMAR-dataset and the available buoy-records399

con�rm higher storminess-indices (λ) at the northern coast (Figs. 11 and 12).400

Figure 11 shows that λ decreases with time, but the stationary model can only401

capture this trend via the prede�ned time-blocks. This supports using a non-402

stationary model to improve the representation of the extreme wave-climate.403

A sensitivity analysis has been carried out on the covariates, at nodes 7 and404

21. In the censorship analysis within this sensitivity analysis, the subset with405

on-shore winds has presented better �t with NAO as covariate, whereas the406

subset with o�shore-winds has done the same with SC. However, an additional407

test on the rest of nodes has not shown better performance, and for the sake408

of consistency and parsimony, the uncensored sample has been applied in all409

nodes. In the uncensored sample, the maximum likelihood estimation indices410

are smallest for NAO and SC, meaning that these are the covariates that mostly411

in�uence λ. The LRT, in turn, denotes that the combination of the two do not412

provide signi�cantly more information than each of these factors by themselves.413

What is more, the AIC and the BIC are lowest for the NAO. Therefore, the414

NAO is selected as the sole covariate for the Poisson-VGAM. Figure 12 shows415

that λ increases with negative NAO.416

NAO, EA, SC (see Figs. 5, 6, and 7) and their �rst and second derivatives417

are also used as covariates in the NS-CI VGAM to predict the storm-thresholds418
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and the GPD parameters. The normality and homoscedasticity assumptions of419

the VGAM (Rigby and Stasinopoulos, 2005) cannot be rejected for the storm-420

threshold and the GPD parameters x0 and β. The incorrelation assumption is421

similarly not rejected for the GPD parameters x0 and β, but should be rejected422

for the storm-threshold. The latter non-conformity should be considered when423

examining the �nal results.424

The statistical model derived from the CMCC-CM (CMCC-A) global circulation-425

model is, then, compared to the eighteen other models, in the Supplementary426

material, Figs. 11 to 18 show the similarity of CMCC-CM results to other427

global circulation-models. For nodes 7 through 23, the distance between each428

pair of climate-index models is relatively short for most cases, except MIROC-429

ESM-CHEM (MIR-B) and MIROC5 (MIR-C). The Aitchison and the Kullback-430

Leibler distances between vecobs and vecmodel are shown on Table 2. The431

location-parameters of the GPD are presented in Figs. 13 and 14. τ from432

the NS-CI HAC-structures are presented in Figs. 15 a 16.433

5. Discussion434

5.1. Pre-analysis (stationarity assumption)435

The decrease in E and D denote loss of energy and duration of storms in436

future climates. D presents more drastic temporal changes in the northern Cata-437

lan Coast. The ACC2 increase in the FF, faster than in the PRNF, suggesting438

that storm-components will present a larger variance over time. ACC2E does439

not behave like ACC2D. Possibly, Hp has a certain role in lowering the variance440

of E. The northward decrease in variance of Tp, observed in Figs. 2 and 3 of441

the Supplementary material, was also reported for SIMAR hindcasts, in Lin-Ye442

et al. (2016). This phenomenon occurs when Tp depends heavily on fetch and443

origin, rather than being a function of wind pulse characteristics.444

As for Eyear, Hs,year, T p,year and Dyear (see Supplementary material, Figs.445

4 to 7), Eyear and Hs,year �uctuate from PRNF on, whereas they have been446

considerably stationary in PT (see Supplementary material, Fig. 4 and 5). The447

general trend in Eyear is a high in the �rst quarter of the XXIst century, fol-448

lowed by approximately 25years of low Eyear, and another quarter of century449

of high Eyear. Hs,year has a cyclicity of approximately 50years. T p,year has450

the same cyclicity as Hs,year, but it presents stationarity in the PRNF, in-451

stead of presenting it in the PT. The time derivatives, dEyear/dt, dHs,year/dt,452

dT p,year/dt, dDyear/dt �uctuate periodically, but no clear cycles are detectable453

(not shown here). The reasons behind the clusterings of Eyear, Hs,year, T p,year454

and Dyear peaks need further atmospheric analysis (see Sub-section 5.3), but455

the consequences can be outlined.456

Dyear, behaves similarly to Eyear. Eyear becomes less stable from PRNF457

onward. Dyear and Eyear behave similarly, due to the de�nition of E, which458

includes D. The low Dyear and the high Eyear at the Ebre-Delta in the midst459

of the XXIst century may lead to more sediment mobility and a loss of resilience460

of the area, which is already highly erosive (CIIRC, 2010). The fact that Eyear461
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depends more on a summation of small storms than a great one elevates the462

importance of the smaller storms with 1 to 5years of return period. Low life-463

time solutions such as Transient Defence Measures (Sánchez-Arcilla et al., 2016)464

would be a plausible solution for these periods. What can be expected is that465

these two seasonal features are not going to be as predictable in the PRNF466

and FF as in PT, but there are some remarkable periods in the second half of467

the XXIst century, when extreme events are present. From the �uctuations of468

Eyear, Hs,year, T p,year and Dyear, it can be perceived that a non-stationary469

approximation is needed.470

5.2. Stationary model471

The fact that the HAC-structure in Fig. 4 is predominant in the AR5-472

projections might be due to Hp being more dependent of E-D in these AR5473

projections than in the SIMAR hindcasts (Lin-Ye et al., 2016). This means a474

remarkable di�erence between AR5 and SIMAR data. Apparently, the AR5475

waves have a lower variability on Hp than the SIMAR data, thus leading to this476

phenomenon. E and D are averaged values, and a higher correlation can be477

expected with data that have lower variability values. In other words, SIMAR478

data might be more heteroschedastic than AR5 data, and this a�ects the copula479

de�nition. Here, the goodness-of-�t of the Gumbel-type HAC with a �mean�-480

type aggregation-method should be acceptable (see Supplementary material,481

Figs. 8 to 10).482

The dependence of Hp with the subset E-D increases southward due to483

the proximity of node 1 to the coast (see Fig. 1). The fact that Hp, E and484

D have milder values in south-Barcelona and in Tarragona (not shown here),485

indicate that storms in the south are less energetic and durable than at northern486

locations. Also, E andD is the strongest related components in all storms, so the487

more energy a storm has, the more time it needs to be dissipated, as expected.488

Tp becomes independent from the rest of the variables (E, Hp and D) in the489

FF. It is observed that, at nodes 1 and 2, E, Hp and D decrease in the second490

half of the XXIst century. However, the time series of Tp does not present any491

trend. Also, except Tp, the rest of the variables consistently depend on D; as492

D decreases in the second half of the XXIst century, the other variables behave493

in the same manner. The values of Hp, D and E are closely inter-connected.494

Tp, on the other hand, is fetch limited, and can hardly surpass 12s, as the495

most frequent wave direction is related to a fetch of 550km (García et al., 1993;496

Sánchez-Arcilla et al., 2008), several orders of magnitude lower than Atlantic497

coasts. The limitation by fetch can also be observed on the Hp data, for all498

time-frames. The temporal and spatial variability of Hp are greater, however,499

than those of Tp. The main storm impact is thus reduced to isolated energetic500

events, with no previous warning nor further replicas. The isolated nature of501

such events will make storm forecasting a fundamental management tool in the502

future, based on causal factors, rather than warning signals of the surrounding503

environment.504
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5.3. Non-stationary model505

The storm-thresholds of the non-stationary model, in all the nodes, fall on506

the linear part of the excess-over-treshold graphs for PT, PRNF, and FF (see507

Fig. 3). Therefore, these thresholds are de�ning extreme events (Tolosana-508

Delgado et al., 2010).509

According to Fig. 12, λ increases with negative NAO. This contradicts510

Nissen et al. (2014), who stated that positive NAO are more favourable for511

cyclone intensi�cation, opposite to the �ndings here. Hence, further research512

is needed to help revise the relationship between λ and NAO, and since NAO513

is strongly related to temperature changes, Climate-Change indirectly a�ects514

storminess at the Catalan Coast.515

In the censorship analysis at nodes 7 and 21, cases with on-shore and o�-516

shore winds have presented better metrics that the general model herein pre-517

sented. When the model is built with the whole storm sample, the interaction518

of the covariates leads to more variability among the global circulation-models.519

This analysis has also reinforced the initial hypothesis that onshore winds are520

correlated with NAO and o�shore winds with SC, which is plausible for the521

study area. Regarding the uncensored sample, the most in�uencing covariates522

for storm-threshold are: NAO, d2EA, and SC. The covariates mostly a�ecting523

the GPD location parameter x0 of each storm-intensity variable are: dSC for524

the E; SC for H and Tp; and EA, for D. The most in�uencing factors on the525

GPD scale-parameter β of each storm-intensity variable are: d2EA for the E;526

d2EA and d2SC for H; NAO for Tp, and dSC for D. From all the possible527

combinations with climate-indices and their time derivatives, the abovemen-528

tioned covariates have been the ones that presented minimum AIC and BIC,529

plus lower p-values of LRT. The suitability of these covariates strongly suggests530

that storms are more a�ected by the dynamics (sea level pressure gradients) of531

climate-indices than the climate-indices themselves. In other words, gradients532

in atmospheric change can lead to an outcome di�erent from that of regular533

shifts of atmospheric states.534

Regarding the 99th quantile in Figs. 11 to 18 of the Supplementary material,535

both amplitude, phase and trend of the signals present similar patterns in all536

global circulation-models, although the oscillations do not necessarily coincide537

among themselves (summarized in Figs. 11 to 18 of the Supplementary mate-538

rial). Stronger disagreement at nodes 1 and 5 can also be understood, because539

of the strong bimodality that exists on the southern part of the Catalan Coast540

(García et al., 1993; Grifoll et al., 2016). The Aitchison and Kullback-Leibler541

distances between vecobs and vecmodel 2 are of order 1, which is the order of mag-542

nitude of the module of the vectors, in all the validating nodes. This indicates543

that the proposed model has been well validated.544

The obtained results do not indicate that Climate-Change is the main con-545

tributor to the switch in storm-patterns. It is not certain to what extent this is546

related to natural variability of large scale indices and how it is a�ected by the547

anthropogenic footprint (Trenberth and Shepherd, 2015). Such an explanatory548

analysis denotes that in this time period, the CMCC-CM global circulation-549

model presents a climate in which the superposition of both natural variability550
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and greenhouse gases will lead to this change. Regardless of each component's551

contribution, this information can be useful to tackle problematic seasons in the552

future.553

The trends of the GPD location-parameters of storm-intensity variables (see554

Figs. 13 and 14) determine their general behaviour. So that where the location-555

parameters of E, Hp and Tp decrease in time, there should also be a linear556

decrease of the variables. There is much noise for all variables except Tp. The557

trends of the GPD location-parameters x0 of E, Hp, and Tp are either con-558

stant or downward. D clearly increases in time at the northern Catalan Coast.559

This increase may have a relevant impact on harbours, which would require560

adaptive engineering to face switches in storm-wave patterns and sea-level-rise561

(Burcharth et al., 2014; Sánchez-Arcilla et al., 2016). Meanwhile, the trend of562

D is negative at the southern Catalan Coast. The decrease in E has been sug-563

gested in Subsection 5.1, but the increase in D at the northern Catalan Coast564

is a new information that has only been clari�ed by the non-stationary model.565

As for the semi-dependence among storm-components, τ (see Figs. 15 to 16)566

values are more constant at the north coast than near the Ebre Delta (south567

coast), where water depths are shallower. That is to say that, wave conditions568

present more variability in shallower waters. τ(E,D) has a considerable upward569

trend at all nodes. This might be explained by a decreasing role of wave-height,570

and a predominant role of D as the local storm feature. There also seems to571

be a cyclical variation in dependence among variables, whose cause should be572

explored in future work. It can also be noted that the peak of τ((E,D),H) in573

the period 2000-2050 shows a particular dependence of Hp with respect to D,574

hinting a concurrence of extreme conditions for wave-height and storm-duration.575

6. Conclusions576

The extreme wave-climate under a RCP8.5 Climate-Change scenario has577

been characterised for a fetch-limited environment (Catalan Coast). For this578

purpose, a non-stationary model for the extreme wave-climate in the period579

1950-2100 has been built. The pre-analysis under the stationary assumption580

provides a �rst assessment of the AR5 projected storms. It suggests that wave-581

storms might be dependent on time, stressing the importance of a non-stationary582

approach. In addition, the stationary model suggests a HAC-structure for this583

non-stationary approach.584

The non-stationary model establishes two types of covariates: a) time and585

b) climate-indices. The �rst type indicates the necessity of a non-stationary586

approach, whereas b) analyses the e�ects of climate-indices, and their �rst and587

second time-derivatives. Storminess appears to depend specially on NAO, as the588

negative NAO may be associated with storm intensi�cation. Regarding storm-589

thresholds and the parameters of the GPDs, they are most in�uenced by the590

dynamics of climate-indices, rather than by the value of the indices. Location-591

parameters decrease with time for all variables, except for storm duration (D)592

at the northern part of the Catalan Coast. HAC dependence-parameters (τ)593

between storm energy (E) and duration (D) present a considerable upward trend594
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in time. Also, the peak of τ((E,D),H) in the period 2000-2050 can be translated595

as a climatic co-existence (under present conditions) of extreme conditions for596

wave-height (Hp) and storm duration, D.597
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Figure 1: Map of the Catalan Coast, area located in the northwestern Mediterranean. The
bathymetry is in meters, showing how all nodes where the proposed model applies (AR5
nodes) are in deep water, except nodes 1 and 16. AR5 nodes are represented by red triangles,
buoy (PdE) nodes are green rhombuses, and SIMAR nodes are solid black points.
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Figure 2: Flow-chart of the methodology applied in this paper.
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Figure 1

1

Figure 3: Excess-over-threshold plots at node 12, in a) past (PT), b) present-near-future
(PRNF), and c) far-future (FF) time frames. The red line denotes the number of events (n)
over the threshold.
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Figure 16: Non-stationary τ((E,D)) dependence parameter at the (E,D) nesting level of the
HAC.
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Table 2: Validation of the proposed model by computing the Aitchison and the Kullback-
Leibler distances between vecobs and vecmodel (see eqs. 6 and 7).

SIMAR/buoy AR5 Ait.dist(vecobs, vecmodel) KL.dist(vecobs, vecmodel)
node node (Aitchison distance) (Kulback-Leibler distance)
N1 23 0.52 0.07
N3 22 0.81 0.16
N4 20 0.18 0.01
N7 19 0.45 0.05
N8 17 0.54 0.07
C1 16 0.20 0.01
C3 12 0.26 0.02
C4 07 0.26 0.02
C5 06 0.96 0.24
S4 5 1.31 0.30
S7 1 0.98 0.23
PdE-Begur 20 0.96 0.24
PdE-BCN-I 12 1.31 0.41

Table 1: Global circulation-models from CMIP5 experiment (Taylor et al., 2012) that are
considered in this study. The latitude and longitude columns denote the grid size.

Acronym Global circulation-model Latitude Longitude
grid size (◦) grid size(◦)

CMCC_A CMCC-CM 0.7484 0.75
CMCC_B CMCC-CMS 3.7111 3.75
CNRM_A CNRM-CM5 1.4008 1.40625
FGO_A FGOALS-G2 2.7906 2.8125
GFDL_A GFDL-CM3 2 2.5
GFDL_B GFDL-ESM2G 2.0225 2
GFDL_C GFDL-ESM2M 2.0225 2.5
HAD_A HadGEM2-AO 1.25 1.875
HAD_B HadGEM2-CC 1.25 1.875
HAD_C HadGEM2-ES 1.25 1.875
INM_A INM-CM4 1.5 2
IPSL_A IPSL-CM5A-LR 1.8947 3.75
IPSL_B IPSL-CM5B-LR 1.8947 3.75
IPSL_C IPSL-CM5A-MR 1.2676 2.5
MIR_A MIROC-ESM 2.7906 2.8125
MIR_B MIROC-ESM-CHEM 2.7906 2.8125
MIR_C MIROC5 1.4008 1.40625
MPI_A MPI-ESM-LR 1.8653 1.875
MPI_B MPI-ESM-MR 1.8653 1.875
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